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Abstract

The Department of Energy is focusing a long-term development effort on
producing cheaper, safer, and faster state-of-the-art soil remediation technologies. To
assist with the management of these innovative technology development projects, ways of
quantifiably measuring technical risk were investigated through a detailed literature
review. “Technical risk” was defined in this study as the combination of the consequences
of undesired events and their likelihood. Careful design of the inputs into a technology
selection decision support system accounted for the uncertainty in forecasting final
characteristics of remediation technologies still in the early phases of R&D. Experts made
subjective probability estimates of these cost, schedule, and performance factors.
Examination of several measures of final cost and schedule risk focused on communicating
the risks inherent in different technological alternatives to the technology manager for
operational, not theoretical, use. These risk measures included subjective measures, using
utility theory, and objective measures, using variation about an expected value. A new
measure was developed, the expected unfavorable deviation, which is similar but superior
to the semi-variance as a measure of downside risk. These simple risk measures can be
used whenever uncertainty is expressed through probability distributions of cost, schedule,

and performance characteristics.
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CHARACTERIZING RISKS IN EMERGING SOIL REMEDIATION
TECHNOLOGIES

1. Introduction

1.1 General Issue

Technology planning is an essential function for any government or private
organization involved with investigating and procuring new matériel. Motivated by
competition in the marketplace or concerns of natioﬂal security, new technology is sought
as a response to changing requirements. Advances in technology are also pursued to meet
needs that currently go unsatisfied. Successful organizations must balance the
opportunities offered by new technologies against the costs of researching and developing
them. This is particularly true when one considers how a firm may invest considerable
time and effort in research and development only to find the results insufficient to justify
the expense. New technologies can be directly investigated by the interested organization
or found outside in the marketplace, but any organization that wishes to survive and thrive
must constantly assess emerging new technologies for eventual future application and/or
impact, trading off today’s resources for future capabilities. Unfortunately, when dealing
with the state-of-the-art, these future capabilities are by no means certain. The

development of new technology is inherently risky.
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There is always some risk involved with strategic and tactical R&D decisions —
risk that the technology will not be ready at the time it is required, risk that it will not
perform as predicted, risk that the development costs will be higher than anticipated, and
so forth. One must gain some insight into both the likelihood of these difficulties
occurring and their consequences to intelligently invest an organization’s resources in
settings of less than certainty.

The nature of emerging technology hinders such assessment. Predicting the
success of an R&D effort or the eventual performance of some new manufacturing
process or weapon system is a formidable task under the best of conditions. While in
some cases one can extrapolate future capabilities from past development efforts (e.g.
Moore’s Law: the number of transistors and therefore the computing power of
microprocessors doubling every eighteen months [Bronson, 1996:192]), for products
involving innovative technological approaches which are fundamental shifts in capabilities
there are often no historical data to draw upon. Generally in such cases one must resort to
the enlightened speculations of those with special in-depth knowledge and expertise in the
specific subject to predict the eventual results of research and development efforts
[Millett, 1991:43].

One such area of research and development is in the remediation of buried
hazardous, often radioactive, waste. Although positive steps have been taken during the
past thirty years to remedy the nation’s environmental problems, many environmental and

economic challenges remain. To answer these challenges, the U. S. Department of Energy



(DOE) has been implémentin g an aggressive national program of applied research that
encourages the development of technologies to meet environmental restoration and waste
management needs, focusing on the DOE’s most pressing major environmental
management problems. The keystone of the DOE’s approach is to develop remediation
technologies that are better, faster, safer, and more cost effective than those currently
available [DOE, 1995a:vii-viii]. These innovative technological approaches lie at or near
the frontier of the s’tate-of-the-an. Due to the innovative nature of many of these projects,
the DOE lacks historical experience upon which to base forecasts. As these technologies
progress toward eventual employment, the DOE will be driven by limited budgets to fully
fund only the most promising approaches. Obviously technology forecasting is of crucial
importance to these decisions, despite the difficulties involved.

The stakes involved in waste remediation and environmental protection are high.
The extent of the waste remediation problem facing the United States is enormous. There
are 3.1 million cubic meters of buried waste on DOE installations alone, with an
associated 40 million gallons of contaminated ground water [Mohuidden, 1995b]. The US
Environmental Protection Agency has listed over 1300 Superfund sites across the country
that must be cleaned up [Luftig, 1995]. The remediation of these waste sites will require
the support of a long-term research and development program to identify lower cost
alternative approaches to currently established techniques. To date, many remediation
methods have been unsuccessful, difficult to implement, or exceedingly costly [Rumer,

1995]. Historically, these methods have included waste containment in barrels, concrete
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blocks, and geologic repositories [Jackson, 1995:1]. The total life cycle costs of these
clean-up efforts could potentially exhaust the nation’s ability to pay for them, over the
seventy to a hundred year time span the national program is expected to last [Mohuidden,
1995a]. Over $750 billion will be spent on remediation in the U.S. in the next thirty years
alone [Gilliam, 1995]. Both the costs involved and the long-term nature of the national
remediation program demand careful technology planning to minimize the financial and

environmental burden of future generations of Americans.

1.2 Background

1.2.1 Risks Involved in Technology. The Department of Energy, like many other
organizations, must develop new capabilities to meet current and future requirements. But
to truly succeed, the DOE has to “win the gamble” by investing in technologies that payoff
in the needed capabilities. Risk is implicit in the decisions made by DOE management,
because the eventual outcome of an R&D effort is uncertain until the project is completed
and deployed in the field.

To a program manager, risks are all in relation to delivering a specified product or
level of performance at a specified time for a specified cost. A wide variety of problems
and events can prevent the meeting of these cost, schedule, and performance objectives
[DSMC, 1989:3-3]. The anticipation of failing to meet these goals forms the risk in the
program.

“Risk” is a difficult term to use precisely. Common meanings of the word include

the chance of injury, damage, or loss and a hazard or dangerous chance. By this usage,
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anything with a possible undesired or unfavorable outcome has risk. The ambiguity
between risk as the likelihood of the undesired event and the event itself keeps precise
definition difficult. The “chance” of an harmful event reflects the uncertain future.

In practiée, the difference between the terms “‘risk” and “uncertainty” is often
obscured. Although managers in both financial and technical fields often confuse these
two concepts [Bhat, 1991:262], in program management “risk™ is often taken to mean the
likelihood of an unfavorable event happening and the significance of the event’s
consequences. The term “uncertainty” describes how the ultimate outcomes of the project
are unknown, and so deals with the likelihood of events and not events themselves. To
truly understand whether a potential event is risky, one must have an understanding of the
impact of its occurrence (or non-occurrence) [DSMC, 1989:3-1].

While there are other sources of program risk, including management difficulties,
funding delays, and other environmental effects, a great deal of risk can be associated with
the technology being developed itself. The attempt to provide a new or greater level of
performance than previously demonstrated, or a similar level of performance subject to
some new constraints of budget, packaging, or time, carries with it the possibility of
failure with the consequence of wasted time and money. This risk is generally referred to
as “technical” or “technological risk,” and is of critical irﬁponance to projects trying to

improve on the state-of-the-art [DSMC, 1989:3-3].
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Concept of Risk

Figure 1.1

For the moment, then, let our concept of technical risk be the combination of
unfavorable events springing solely from the technology that impact cost, schedule, and
performance objectives with the likelihood of their occurrence, together with the
uncertainty involved with not knowing what will actually occur. We will refine this
definition after examining several different ways of quantifying risk in Chapter II.
Estimating technological risk, however, is problematic. Figure 1.2 graphically depicts the
categories of knowledge with which the manager must deal. Known data are readily
available to the planner. Knowable data are those that can be collected by investigation,
testing, program reviews, or other established methods. Unknowable data cannot be
ascertained at the current point in time, most often because they depend on future results.

The degree of uncertainty increases as one goes from the known to the unknowable. As
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Degrees of Knowledge
Known

Knowable

Unknowable

[Sietsma & Sietsma, 1991:284]

Figure 1.2

the figure suggests, the necessary information to understand the risks involved comes from

all three categories. While possible events can be anticipated, the actual probabilities of

their occurrences lie in the unknowable category and therefore must be estimated and/or

approximated.

Unfortunately, one common way to deal with uncertainty in analyzing program and

project management is to ignore it, conducting business as though current projections are

100% accurate. The underlying assumptions are that the project is deterministic and ail

factors are knowable, and that planning could be made practically watertight if only time

and resources allowed development of sufficient detail in the plan [Sietsma and Sietsma,

1991:284]. This is a poor way to serve technology decision makers.
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“Ignoring the inherent variation or uncertainty only masks its effects and give an

unwarranted veil of pseudo-accuracy to the analysis. Furthermore, if the total

uncertainty is significant, not recognizing it will often totally distort the results of

the analysis in an unknown way, making any decision based on the analysis highly

suspect” [Choobineh and Berhens, 1992:907].

Inclusion of the risks involved is therefore an important part of helping program
managers make technology investment choices.

1.2.2 The Office of Technology Development. The sponsor of this study, the
Qfﬁce of Technology Development (EM-50), has the mission of researching new and
innovative technologies to meet the DOE’s environmental remediation needs. EM-50
works with other programs within DOE, other federal agencies, national labs, universities,
and the commercial sector to maximize research efforts and ensure safe and efficient
clean-up. Its goals are to develop technologies that make remediation safer, more cost-
effective, and compliant with existing regulatory requirements. In many cases,
development of new technologies presents the best hope for ensuring a substantive
reduction in risk to the public, the workers, and the environment [DOE, 1995c:4].

The primary customers of EM-50 are two other major parts of the Environmental
Management division of the DOE. The Office of Waste Management (EM-30) is
responsible for treating, storing, and disposing of waste, and managing spent nuclear fuel
generated during weapons processing and manufacturing, research activities, and site
remediation activities. Currently, DOE facilities house more than one million cubic meters
of radioactive waste. EM-30 is also responsible for coordinating waste minimization and

pollution prevention efforts for the entire DOE. The other primary customer of EM-50 is

the Office of Environmental Restoration (EM-40). Their mission is to protect human
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health and the environment by remediating contaminated soil, groundwater, surface water,
structures, and othér materials at EM sites. Other EM-40 responsibilities include
necessary landlord, oversight, surveillance and maintenance, and technical assistance to
support remediation work [DOE, 1995c:2-4].

1.2.3 Department of Energy waste remediation responsibilities. The Department
of Energy is responsible for cleaning up approximately 3.1 million cubic meters of buried
waste at various landfills on government property throughout the U.S. This waste is
predominantly located at six DOE installations: Hanford, Savannah River, the Idaho
National Engineering Laboratory (INEL) at Idaho Falls, Los Alamos National Laboratory,
Oak Ridge (X-10), and Rocky Flats. About half of this waste was buried before 1970,
predating the more strict environmental regulations of the past three decades. Previous
disposal regulations permitted the commingling of various types of waste; therefore, much
of the buried waste throughout DOE sites is presently believed to be contaminated with

both hazardous and radioactive materials (so-called mixed waste), a situation which
greatly complicates remediation efforts (sée Table 1.1 for types of waste [DoD:1994, 2-
1.

Typical buried waste includes construction and demolition equipment (such as
lumber and concrete blocks), laboratory equipment, processing equipment (such as valves,
ion exchange resins, and particulate air filters), maintenance equipment (such as hand
tools, cranes, and machine oils), and decontamination materials. Typical disposal

containers included steel drums of various sizes, cardboard cartons, and wooden boxes.



Larger individual items were disposed of separately as loose trash. Degradation of the

Types of Waste

Volatile organic compounds (VOCs)
Semivolatile organic compounds (SVOCs)
Fuels
Inorganics (not including radioactives)
Explosives
Low-level radioactive waste (LLW)

Low-level mixed (radioactive and hazardous) waste

High-level radioactive waste

Table 1.1

waste containers is believed to have resulted in the contamination of the surrounding soil
as well [DOE, 1995b:6]. Since more than twenty five years has passed since much of the
waste was buried, in some cases no documentation of exactly what was buried has
survived [Mohuidden, 1995a].

The resulting uncertainty of exactly what waste types and items exist in a given
landfill complicates the remediation process. Even a technology that has proven itself
reliable and effective at other sites may “fail” when an unanticipated waste stream is found
that the technology is incapable of effectively handling. Thus the first step in any
remediation process is a careful assessment of what waste lies beneath the surface of the

landfill (see Figure 1.3). This characterization and assessment is also a potential source of
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Remediation Processes
“technology stream”

removal —(treatment }—Flisposal

monitoring

characterization stabilization
& assessment (yes, no)

passing of time
Figure 1.3

uncertainty, as the characterization may not be accurate or precise.

When the charaéterization is sufficiently complete, the major decisions of how to
remediate the landfill must be made. In general, there are two approaches: 1) removal of
the waste from the ground, followed by some treatment to make the waste manageable,
and then storage of the treated waste (either on or off site); or 2) containment of the waste
on site behind some sort of “barrier” which prevents further leaking of the waste into the
surrounding environment. Temporary stabilization of the waste stream may also be used
to prevent waste from reaching the environment until some more permanent solution is
implemented. The use of one particular approach is not exclusive — different
characterization, treatment, and/or containment technologies may be combined during one

clean-up to cover different waste types in a “treatment train.” The final stage of any
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remediation is the placement of monitoring stations around the landfill and/or the waste

storage location to watch for waste that might have been missed or degradation of the

containment system [Mohuidden, 1995al.

1.3 Report Scope and Organization

This study investigates means to incorporate quantitative and qualitative risk
measures in examining emerging technology. This research had two principle objectives.
The first was to develop part of a decision support system to aid the DOE in selecting
landfill remediation technologies for further funding, based on life-cycle cost modeling and
risk criteria. The model is being developed under contract to the DOE Landfill
Stabilization Focus Area, as a cooperative effort of the Air Force Institute of
Technology’s Department of Operational Sciences (AFIT/ENS) and a DOE contractor,
MSE Technology Applications Inc. This study concentrated on the technology risk
characterization framework for this decision aid, combining ideas from risk assessment
and technological forecasting literature. See Chapter II1, section 3.1 for a detailed
description of the decision support system. An ancillary goal of this study was to conduct
a more general investigation of assessing the risks of emerging technologies.

1.3.1 Scope. This research focused on soil remediation technologies, with
particular attention to the technologies demonstrated as part of the DOE Landfill
Stabilization Focus Area projects. The specific risk factors that are examined through the

technical risk assessment framework are listed in Table 1.1 below. These risk factors
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Risks Assessed in Technical Risk Characterization Framework

risk in... method used by
development distribution of dates when technology LCC Module
schedule completes R&D
development costs uniform cost per year of R&D LCC Module
implementation probability that technology will work Decision Analysis
performance successfully in the field Module
compliance with question user if the technology meets the Technology
regulatory regulation requirements governing the Database (screening
requirements landfill in question criteria)
Table 1.2

were selected by the project team in October 1995 to establish the
information/communication requirements between the different modules of the overall
model (see Figure 3.1).

This research concentrated on the process of estimating these risk factors.
Information about the technologies assessed for demonstrating the overall model was
provided by MSE. Since actual performance data for these emerging technologies was
not available, reliance on expert judgements about the technologies’ future capabilities was
required.

Only a cursory treatment of the research and development costs of emerging
technology was conducted in this study, as cost analysis is the research focus of the LCC
modeling effort. Simplifying assumptions about the distributions of cost between different
phases of the R&D process were made. To provide a detailed treatment of R&D cost

estimating for each specific technology is outside the scope of this research. Such a study
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would require a detailed engineering analysis of each individual system and its individual
characteristics. A more general model, able to review a wide variety of remediation
technologies, was the objective of this study.

1.3.2 Report Organization. The results of the literature review are discussed in
Chapter II, while the methods used to estimate the technical risk factors are described in
Chapter III. Also included in Chapter III are additional discussions of measures of risk
that can be used to distinguish between recommended technology portfolios. The results
of exercising these concepts on a set of demonstration technologies selected by MSE are
discussed in Chapter IV, while conclusions and recommendations for further work lie in
Chapter V. Preliminary computational results from the decision support system using

notional technology data are included in appendices.
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II. Literature Review

Since this thesis supports the development of a life-cycle cost and technology
selection decision model to aid technology managers in making their technology
investment decisions, this chapter will be organized by practical issues. Different ways to
define and quantify risk will be discussed first, including ideas drawn from both risk
assessment and technological forecasting literature. The special nature of innovative and
novel technology complicates this definition, since there are greater uncertainties involved
with assessing the technologies’ characteristics. A discussion of risk analysis and
technology forecasting and their use in program management follows. The nature of
emerging technologies requires the use of subjective expert judgement, and therefore most
of the remainder of this chapter is devoted to ways of soliciting and using expert opinion
for assessing risk. Finally, some comments about public perceptions of risk will round out

the literature review for this work.

2.1 Concepts of Risk From the Literature

While the Department of Energy has defined “risk” and “risk assessment” in its
documents, it has taken “risk” to refer to only health and environmental issues. In a
similar fashion as our general concept of risk formed in Chapter I, the DOE says risk is
“the probability that something will cause injury, combined with the potential severity of
that injury” [DOE, 1995¢:67]. For the moment, let us distance ourselves from a specific

definition and consider several different concepts of “risk.” The definition we use for
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“risk” sets the form we use to quantify and measure it, and so this definition should be
selected carefully. One used in this study may not be appropriate for some other later risk
analysis, and so this issue should be re-examined at the beginning of any study. The
selection of a “measure of effectiveness” must be done with careful thought [Attaway,
1968:55].

2.1.1 Qualitative Assessment of Risk. Having said that our objective is to
qualitatively assess risk, we should mention that qualitative rankings are often used. One
way that is often used to characterize the risks of different alternatives is to use subjective
judgement to give each alternative a “risk score,” using some kind of qualitative numerical
scale. This simple way of assessing risk bypasses the difficulties of objectively measuring
it and can quickly produce results from a panel of experts or the decision maker.

Ryan states in an article dealing with assessing risks of new technologies that
“some form of sophisticated numerical risk rating” is unnecessary for associating risk with

\technologies. Once technologies have been identified as part of a project, all that is
required is “simply classifying [their] risk as low, medium, or high.” Low risk
technologies are not expected to present problems if traditional practices are followed.
Medium risk technologies require special measures during development to “ensure that
[development] proceeds properly,” while high risk technologies may fail even with
“special measures” [1990:69-70].

A similar approach was used in a recent study of different treatment technologies

that use thermal mechanisms in their process. There, using topics established in the
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Federal Facilities Compliance Act of 1992, experts qualitatively assessed scores of the
different alternative technologies using high, medium, and low levels. Some of these
topics included total LCC, environmental and heath risks, and risks of regulatory
compliance [Feizollahi and Quapp, 1992:5-1, 5-41-3].

The difficulty in this approach is that “risk” is often not specifically defined.
Making trade-offs between risk and other decision making criteria is difficult, since
objective relationships between the criteria are not known. What is “high” for one person
may be “medium” to another. While these and other problems exist with subjective and
qualitative assessment, this sort of categorization of technologies is quick and may be all a
decision maker requires. In our problem, however, more quantitative measures are
desired.

2.1.2 Ways of Dealing With Uncertainty. If we are going to quantify risk, we
must start with the concept of uncertainty. Uncertainty about the actual outcome of a
future event with the potential for undesirable consequences is part of our concept of risk.
Uncertainty reflects a lack of knowledge about the true state of events. One may lack
knowledge about both the chance and the consequence of an uncertain event. If there was
no uncertainty, there would be no risk. The outcome would be known and determined.

It is useful to distinguish between not knowing what the potential outcomés of a
“risky” event are and not knowing which of a set of known outcomes will actually come
to pass. Helton labels these states of knowledge as “subjective uncertainty” and

“stochastic uncertainty,” respectively. Analysts traditionally express subjective uncertainty
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through establishing a set of possible outcomes and using probability distributions to
characterize where the true outcome lies in that set. Examples from project management
would include predicting a product’s final delivery date or total development costs.
Stochastic uncertainty, on the other hand, is addressed by examining the totality of
possible outcomes and their likelihood of occurrence. More information is known under
stochastic uncertainty than with subjective uncertainty. Helton also describes
“completeness uncertainty,” where the question is raised of including all of the possibilities
inside the boundaries of the modeled set of potential outcomes [1994:483-6]. . Application
of the completeness uncertainty concept is difficult, since we cannot know what we do not
know, but can be used with subjective feelings of confidence (see section 2.1.3 below).
Emerging technology management deals more with subjective than stochastic uncertainty,
and so that is what will be meant by “uncertainty” in the rest of this text unless specified
otherwise.

2.1.2.1 Subjective Probabi'lity. The basis of the above definitions of
uncertainty is the concept of probability. While many introductory statistics textbooks
introduce “probability” as a relative frequency of a certain outcome occurring over a long
term period [Mendenhall, et. al., 1990:17-8], this definition is of little use in the case of
innovative technological R&D. Many of the events of interest happen only once: for
example, the completion of a specific research program, the success or failure of a given
field test, or the signing of the final government payment receipt for a particular item.

Thinking in terms of long-run frequencies or averages makes little sense for one-of-a-kind
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events, and so a different view of probability will be used. Looking at Figure 2.1 below,
we can see the contrast between traditional objective probability and subjective probability
— how more certainty is required for objective descriptions of probability. For our
purposes, subjective probabilities will represent a degree of belief that an event will occur.
There are no correct answers when it comes to subjective judgement — an event judged
to be highly improbable may still happen without nullifying the original judgement.
Without a sufficient number of identical trials, the validity of a subjective probability
estimate cannot be verified [Clemen, 1991:208-10].

These subjective probability estimates are traditionally used to represent subjective
uncertainty in simulation and decision analysis. The set of possible events and assigned

probabilities can be used to find expected values of the parameter in question. The

Ways of Dealing With Uncertainty

bounding with intervals

fuzzy sets and “possibility distributions”

uncertainty

\é\ subjective probability distributions

\gx. objective probability
§ e distribu'riory
§ 1\*-
:

s v,

Figure 2.1
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expected values of unknown variables are often used instead of known coefficients for
deterministic math programming approaches to dealing with risk [Weber, et. al., 1990].

The point below or above which the actual value of the parameter will fall can be
found from the cumulative distribution for some set probability. This is useful in reliability
studies, where comparing the times where, say, 1% of a set of sub-systems will fail is a
key criterion for choosing which type of sub-system to buy. Establishing these probability
distributions can be difficult. Attempts should be made to obtain the highest quality
estimates practical, but the fundamental difficulty of predicting the unknowable remains.

2.1.2.2 Intervals and Bounds. As Figure 2.1 shows, using subjective

probability to describe unknown parameters does require some certainty, either in prior
knowledge of the parameter in question or assumptions in order to settle on the type of
probability distribution to use for the estimation. If assumptions cannot be justified or
prior information does not exist in sufficient quantities, other methods may be necessary.

One approach that requires the least known or assumed information is to estimate
the absolute limits of an interval which contains the parameter in question. For example,
managers may try to estimate the time when a manufactured product will be delivered to a
customer. They can bound the actual delivery date with the earliest and latest possible
dates and form an interval.

These bounds can either stand on their own as a statement of what is possible and
impossible for the estimated parameter in question, or be used in a model of some process

to generate further intervals for other important variables. If one had interval estimates for
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the n inputs of such a model, one would need to consider all possible 2" combinations of
these inputs to find the bounds on the output, an approach called the vertex method
(named for the vertices of the n-dimensional feasible space for the model output)
[Choobineh and Behrens, 1992:909-10]. The interval of possible values of the output
would then be known, subject to the believability or the original input interval estimates
and the model.

The usefulness of bounds is questionable, however. While interval analysis is
relatively simple to use and requires the minimum level of information, the instantaneous
transition at the bounds from possible to impossible can be a poor or counter-intuitive
assumption [Choobineh and Behrens, 1992:917]. Another difficulty with intervals is
assigning meaning to the bounds of results from interval arithmetic on other intervals. Say
one was trying to find the bounds on the possible remediation costs for a landfill, using
stabilization and a retrieval-treatment-disposal strategy and a known volume of low-level
waste. The lower bound for the total cost would be the sum of all the lowest process
costs, while the highest bound would the sum of the highest. Even knowing nothing about
the way the costs are distributed for each process, one can see that it is very unlikely for
the total costs to be at one of the bounds. If one takes a set of intervals as the limits of
uniform or unimodal probability distributions, bounds on the sum or product of thé set
resulting from even mildly correlated input variables may represent likelihoods so low as
to be practically worthless [Auclair, 1996]. However, knowing the upper and lower

bounds (i.e. the best and worst cases) of a uncertain outcome can be valuable.
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2.1.2.3 Fuzzy Sets and Possibility Distributions. An approach requiring
an intermediate amount of certainty, falling in between subjective probabilities and
intervals, is the use of fuzzy set theory. Itis an extension of interval analysis to include
multiple intervals with different levels of completeness uncertainty.

Instead of just one interval of possible values for the unknown parameter,
successively smaller multiple intervals are established with the understanding that the value
of the parameter is contained within the intervals with successively lower subjective
probability. Possibility distributions (as opposed to probability distributions) act as the
“membership function” of the parameter. The membership function of a level of the
parameter indicates the degree of "belongingness” of that level in the set of possible
values, and are often subjectively assessed through simple linguistic descriptions of
sureness and certainty. Membership functions are expressed as being between 0 and 1.
Using a threshold value, «, one can generate crisp ordinary intervals from the set of
possible values by including only those levels that have a membership function of greater
than or equal to «. This « is called “the level of presumption” and the resulting interval is
called an “a-cut.” Interval arithmetic can then be used to find output intervals for a given

o [Choobineh and Behrens, 1992:911-2].

2-8




The definition of & requires that the possibility distribution be unimodal. If the
membership function of the parameter value i is p;, where ; € [0,1], the a-cut of the
fuzzy set I is I, which contains all the possible values in I such that p; > «. A possibility
distribution can then be constructed by a series of k nested intervals such thatI,, < I, <
I,c..cl,cl, where al > a2 > a3 >...>ak. These possibility distributions can be
somewhat triangular in shape such as in Figure 2.2, although they are not restricted to

such shapes. The possibility distribution can be used in ranking different intervals of the

parameter with regard to a decision maker’s value of the level of certainty that the
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nterval contains the desired parameter [Choobineh and Behrens, 1992:911-15].

The creation of possibility distributions require less information about the
parameter in question compared to subjective probability estimates [Choobineh and
Behrens, 1992:908]. The “level of presumption,” «, represents the likelihood that the
estimated parameter will be contained in the interval, in a wayv that is very similar to
confidence intervals developed in standard statistics. The level of presumption performs
the same function as the confidence coefficient, the probability that the interval holds the
parameter of interest [Mendenhall, et. al., 1990:353]. Possibility distributions are
subjectively assessed confidence intervals, where expert opinion is used instead of
statistics to define the bounds of the interval.

2.1.3 Risk as a Probability and Associated Consequence. The traditional
approach in project management and risk assessment in defining “risk” and “uncertainty”
is to use “risk” in situations that Helton would label stochastically uncertain, where the
potential outcomes are known and only the probabilities of their occurrence must be
investigated, .and “uncertainty” where Helton would use “subjective uncertainty” [Bhat,
1991:262; Levy and Sarnat, 1990:190]. This difference is sometimes used to establish a
border between what can and cannot be modeled, since “uncertainty” prevents clear
knowledge of possible events. This is not a very useful distinction for us, since wé are
dealing with subjectively uncertain issues with emerging technology. One can postulate

certain outcomes and proceed from there, building a worthwhile model of “uncertain”



events while keeping one’s assumptions in mind. For the purposes of this study, Helton’s
terms are much more useful.

Formal Department of Defense guidance in program management defines “risk” as
the likelihood of an undesirable event occurring and the significance of the event’s
consequences. “Uncertainty” addresses only the likelihood. To truly understand whether
a potential event is “risky,” one must have an understanding of the impact of its
occurrence or non-occurrence [DSMC, 1989:3-1]. This approach may be more practical
than that of the traditional project management definitions above.

The separation of risk into probability and consequence has other advantages, as
well, by allowing risk control efforts to be split between prevention and mitigation.
Prevention efforts are any set of actions that reduce the probability of undesired events,
while mitigation efforts reduce the level of unfavorableness of an event. Prevention
actions are not necessarily exclusive from mitigation efforts. In a sense, when using risk
as a decision criteria for our remediation technology investment problem, we are
evaluating different prevention and mitigation alternatives [Sherali, et. al., 1994:200]. If
we compare future technologies to what currently we use in terms of, say, cost,
prevention and mitigation would be expressed in the shape and location of the
technologies’ cost distributions.

As already discussed in section 2.1.2.1, subjective probability distributions are

traditionally used to describe situations of subjective uncertainty. If the events in question
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include unfavorable outcomes, then all the information needed to satisfy the DoD
definition of risk is at hand once these probabilities are known or assumed.

2.1.4 Concepts of Risk From Financial Literature. Financial methods to deal
with risk and uncertainty are often applied to evaluations of new technology. Ways of
dealing with risk factors for evaluating different economic options have been proposed and
used. Ignoring the uncertainties entirely is sometimes done [Choobineh and Berhens,
1992:907], but is only sensible when all the possible options are low risk to start with.

2.1.4.1 Net Present Value. Cash flow based methods such as net present
value (NPV) and internal rate-of-return (IRR) are traditional tools of financial analysis of
capital investments. Estimating NPV of the costs of an alternative requires both estimates
of the cash flows and their timing, as one can see from Equation 2.1. This shows how to
calculate the NPV of a stream of cash flows x,, x;, ..., X, over » periods, using an interest

rate of i [Clemen, 1991:24-5].

X X

X 1 n

0
(A1) (i) (1)
n x

=E__."__

J=1 (1 + i)j

NPV -
(2.1)

The interest rate i (also called the discount rate) is chosen to represent the return one gets
from the next best investment opportunity. NPV, then, is used as a relative measure of
return on investment by comparison to some more certain rate of return. The choice of i

is often used to reflect the riskiness of investments, by deflating the potential benefits of
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alternatives judged to be “risky” in comparison to other options [Levy and Sarnat,
1990:245].

The IRR is the interest rate required to generate a NPV of 0. This is taken to be a
more absolute measure of an investment’s return, since different alternatives can now be
compared to see what sort of equivalent certain return would produce the same net profit
VanHorne, 1971:55]. Equation 2.1 is solved for i, resulting in an ™ degree polynomial
that could have up to n real roots [Cain, 1996]. The difficulty with IRR is discriminating
between the set of real solutions to find the “right” one [Levary and Seitz, 1990:31].
There may only be one positive real root, but if there are multiple feasible roots there are
no ways to judge which is “right.” For this reason IRR is not always an appropriate
measure of financial risk [Cain, 1996].

Arguments against using NPV and IRR measures of technology risk include
comments that they undervalue new technologies, because of the discounting effects of the
calculations. Future benefits (represented by some positive cash flow) are given little
weight compared to near-term net profits. NPV also requires a static view of future
industrial activity, represented by the single interest rate. Many benefits that cannot be
quantified in terms of money are ignored [Mitchell, 1990:155; Ashford, et. al., 1988:637-
8].

A “hurdle rate” is sometimes set as an arbitrary expected rate of return or
performance below which candidate projects are disregarded. It is based on the principle

that high returns should follow high risk. This rule ignores the variance of the risk factors
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around the expected value, and naively expects that demanding high expected performance
will always produce high actual performance. Another approach is to adjust estimates
coming from analysis groups by some historical average correction, accommodating the
risk of poor estimation by adjusting their figures by some percentage increase or decrease
derived from what would be needed on average to correct their past estimates. This
ignores the variance involved with the groups’ estimates [Troxler and Schillings,

1993:30].

Sometimes NPV yields poor results because the discount rate is set too high,
exaggerated by several over-estimation tendencies that bias NPV against long-term
rewards. Ashford, et. al., argue that the error lies in unrealistic interest rates, not in using
NPV. “Risk free” rates from government bonds of similar value should be used, perhaps
with some additional risk premium. They also argue that benefits that are traditionally
difficult to quantify, such as re-use of flexible equipment in other projects, can be included
with careful work, and that interactions between technologies assumed to be independent
should be included as well. The baseline case, used to compare against future possible
improvements, must be selected with care, since one can easily overstate this extrapolated
status quo future without reflecting the effects of competitors’ advancements [1988:637-
9].

These financial standards are not easily used alone when the technology being
developed does not generate revenue or directly mitigate expenses. However, they can be

used at least to objectively compare alternatives based on cost.
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2.1.4.2 Risk as Variation From an Expected Value. Uncertainties in both

the cash flows and their timing must be accounted for in some fashion to use our basic
concept of risk. Indeed, the financial community has generally not distinguished between
“risk” and “uncertainty” [Levy and Sarnat, 1990:190]. Finance literature has understood
“business risk” as being the relative dispersion of the net operating income of a firm
[VanHorne, 1971:46]. For our problem of technology investment, this translates into
concerns about the relative dispersion or variance of important decision criteria such as
cost and time. Subjective probability distributions can be used to describe the random
variables used to express these criteria when objective data does not exist [Levy and
Sarnat, 1990:191]. Risk is then expressed by the variance of the estimated distribution of
the decision variable around the expeéted value, and can be measured by the variance or
standard deviation [VanHorne, 1971:46; Levary and Seitz, 1990:64].

A relative measure of risk is the coefficient of variation, defined as the ratio of the
standard deviation to the mean. Larger coefficients of variation mean larger risk
[VanHorne, 1971:46].

Another related measure of risk is the semi-variance. It is calculated the same way
as variance, but only including that part of the distribution in one direction above or below
the mean. This measures ‘“down-side” risk, when variation in only one direction is |
considered “risky” [VanHorne, 1971:186; Levary and Seitz, 1990:79-80]. The semi-

variance is recommended for use when the PDF of the attribute in question is not



symmetrical and therefore the variance may misrepresent the risk of alternatives [Levary
and Seitz, 1990:80].

One can use these different risk measures to characterize alternatives by both
“profitability” or “costliness” and “risk,” using the expected value and some measure of
variation, respectively. Alternatives are compared on the basis of means and variance. If
a choice has a better (higher or lower, depending) mean and a lower variance, it is clearly
the preferred choice [Levy and Sarnat, 1990:214]. Other cases, where say one alternative
has a better mean but a larger variance, require trading off “risk” versus “value” in some
way.

Another approach using subjective probabilities is to use the resulting cumulative
distributions to find the probability that the final decision variable will be above or below
some target value. The alternatives can then be distinguished by their different
probabilities [Levary and Seitz, 1990:64].

2.1.5 Risk as a Perceived Characteristic. Since there are many uses of risk in
health, safety, project management, and military literature, it is possible to lose sight of an
important practical issue while attempting to estimate occurrences and likelihoods — that
the risk involved with a possible alternative is often a subjective assessment made by a
decision maker or stakeholder, with an association of negative value that does not‘result
from careful rational thought [Wheeler, 1993]. However risk is defined, its impact on
decisions is through the preferences of the decision maker, whether those preferences are

formed by intuition or by painstaking risk assessment. Analysis can describe known or
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hypothesized risks, but ultimately it is the decision maker’s values and trade-offs that
express risk.

2.1.5.1 Utility Theory. Decision analysis (DA) methods traditionally treat
risk implicitly by incorporating the decision maker’s preferences. DA attempts to
prescribe the best decision from a set of alternatives while addressing the inherent

uncertainty in the situation and potentially multiple competing objectives, by maximizing

levels of an attribute [Clemen, 1991:2-3; Keeney and Raiffa, 1976:6].

Lottery with Expected
Monetary Value of $2500
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alternative A
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expected utility.” Utility expresses the subjective values of the decision maker for various
|
|
|

0.5

given 32500

alternative B

Figure 2.3

“In this thesis utility function always refers to a von Neumann-Morgenstern utility
function used in decision analysis and multi-criteria decision making, not an economist’s utility
function [Keeney and Raiffa, 1976:150].
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If a person is faced with a choice between two alternatives like the one shown in
Figure 2.3, he or she may be indifferent between A and B since they have the same
expected monetary return of $2500. Someone else may not feel the same, however, and
take the certain $2500 rather than run the risk of losing $5000. A third person may forego
the sure $2500 because the chance of winning $10000 is too appealing to resist. This
difference in preferences, when the expected monetary value of the two alternatives are
the same, is due to different feelings about the risk involved with alternative A [Keeney

and Raiffa, 1976:149-50].

Reference Lottery for Utility of $2500

win $10,000

0.5

alternative A

lose $5000

0.5

alternative B

Figure 2.4

The way these feelings are captured for use in decision analysis is through utility
functions, which mathematically express the subjective preferences of the decision maker.

These utility functions are assessed using reference lotteries like that shown in Figure 2.4.
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The same alternative A is used, which has an expected value of $2500. A decision maker
would be asked to examine this lottery and choose an x that would make him or her
indifferent between alternatives A and B. If this x was $2500, we would know that this
person was neutral toward the risks of the gamble. If x was less than $2500, we would
know that he or she would prefer to avoid the risks, which we call “risk aversion.” A
“risk seeking” person would set x greater than the expected value [Clemen, 1991:367-7,
375].

The key point here is this: because the decision maker is indifferent between his or
her x and the lottery in A, the utility of x must equal the expected utility of the gamble. If
we know the utilities of winning $10,000 and losing $5000, we can average them to find
the utility of x [Clemen, 1991:377].

Utility is measured between 1 and 0. We can set the utility of $10,000 to be 1.0
since it represents the most money we could ever win, while the utility of -$5000 can be 0
since it is the lower limit. Since the expected utility of alternative A is 0.5, we now know
that the utility of x is 0.5 as well. We can now change alternative A to be a gamble
between x and $10,000 and find the new dollar amount that the decision maker is
indifferent to, knowing that this will have a utility of 0.75. This can be repeated until the
entire utility function is defined over the range [-$5000, $10,000].

This iterative procedure, using a general reference lottery like that of Figure 2.5,
uses the concept of the certainty equivalent to piecewise assess a decision maker’s utility

function. In our previous example, x represents the guaranteed amount of money that has
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utility, u(x)
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the equivalent value as the uncertain lottery in alternative A. This x is the certainty
equivalent of the lottery in A, and will always be less than the expected monetary value for
a risk averse person or more than it for a risk seeking one. The difference between the
certainty equivalent and the actual expected. monetary value of the lottery is called the risk
premium [Clemen, 1990:371].

The risk preference is captured in traditional decision analysis by the shape of the
utility function. Using reference lotteries like that in Figure 2.5 produces utility curves
similar to those shown in Figure 2.6. For increasing utility functions, the concave utility
function represents risk aversion, the linear function represents risk neutrality, and the
convex function represents risk seeking preferences [Clemen, 1990:367-8].

2.1.5.2 Risk as Marginal Utility. A formalized version of the previous
statement provides a measure of risk aversion through the following local risk aversion

function, r(x), defined on the utility function u(x):

u " (x)

u'(x)

r(x) = - (2.2)

where u (x) is the first derivative of u(x) with respect to x and u”(x) is the second
derivative. If r(x) is positive for all x, u(x) is concave and the decision maker is risk
averse. If ris negative for all x, u(x) is convex and the decision maker is risk seeking
(notice that the utility function must be continuously twice differentiable for this risk

aversion function to be defined). If two utility functions u,(x) and u,(x) are compared and
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r,(x) > ry(x) for all x, u,(x) indicates more risk aversion than u,(x) [Keeney and Raiffa,
1976:160-3].

Using this risk aversion function as a measure of the decision maker’s feelings for
risk, it is possible to define sets of utility functions based on their risk behavior. For
example, decision makers tend to be more risk neutral when the decision involves
monetary amounts that are small with regard to their total assets, say as the manager of
large government projects or the executive of a large corporation. For these decisions,
expected monetary value may be sufficient [Clemen, 1991:368]. Many types of risk
aversion are possible, whether it is decreasing, constant, increasing, or even proportional
to the amount of wealth at risk. The type of risk aversion can restrict the form of potential
utility function to only certain ones, making risk aversion a powerful first step in assessing
a decision maker’s utility function [Keeney and Raiffa, 1976: 165-179].

It is important to remember that utility functions are only models of individuals’
attitudes toward risk. They are defined for a specific set of objectives and criteria for the
moment they were developed. It is dangerous to broadly interpret these revealed
preferences. DA uses utility functions to add risk considerations to otherwise objective
criteria as a way to model subjective decision making. However, a person’s feelings
toward risky alternatives can be complicated and may depend on what is at stake, vthe
context of the decision, and the time horizon [Clemen, 1991:368]. Use of utility functions
requires the assumed adherence to utility axioms which may or may not be violated by the

decision maker.
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2.1.5.3 An Extension of Risk as Variation From the Expected Value. The
concept of risk as variation from the expected value taken from financial literature and the
idea that risk is something perceived by the decision maker can be combined. This is the
strategy that Jianmin Jia and James Dyer use to explicitly trade off the “risk” of an
alternative against its “value.” They develop a “standard measure of risk” by using the
expected difference between the potential outcomes of a lottery and the mean of the
outcomes. If x is a random variable representing the outcome of a lottery whose possible
outcomes are members of the non-empty set {X} and X is the expected value of x, then a
new random variable x” can be defined as the difference between x and its mean X. This x~
is called the “risk variable” of the “value” x and represents the potential outcomes
distributed around the mean %. Note the expected value of x” is zero [1993:4-7].

Just as a utility function can be assessed representing the utility of x with standard
decision analysis methods, a utility function for the risk variable x”can also be assessed for
the decision maker which represents his or her feelings for risk explicitly. This utility
function, u,(x"), is the equivalent of u(x - X) [Jia and Dyer, 1993:6].

Instead of assessing a new utility function, u(x"), Jia and Dyer use the original
utility function u(x) to express the value of the deviations from the mean. They define a
“standard measure of risk” as the following:

R(x’) = - E [u(x - x)] 2.2)
where E[u(x - X)] is the expected utility of the mean of the difference between x and its

mean when using the original utility function assessed on x [Jia and Dyer, 1993:5-6].
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Increasing R(x”) means decreasing preference, assuming risk aversion. This risk measure
is independent of the original mean of x and can be used as a measure of perceived risk.
The potential alternatives {X} can be ranked in accordance with R(x"), just as with any
other expected utility, as an independent criteria that is used with others to form a decision
analysis policy [Jia and Dyer, 1993:5-7].

The use of such a risk measure can be illustrated with a simple example. Suppose
there were two possible outcomes of a gamble, a and b, with expected outcomes a and b.
If a has more variation about its expected value than b, R(a) > R(b). Then b would be
preferred over a if this risk measure was the only criterion for evaluating the choices. One
can include non-risk criteria in evaluating the alternatives, however, and explicitly trade-
off “value” against “risk” using multi-attribute utility theory, since Jia and Dyer’s
“standard measure of risk” is independent of any expected value or certain payoff of a or b
[1993:7, 9].

2.1.6 Summary and Refined Definition. We can see that there are many ways to
define and quantify risk in the literature. Financial methods concentrate on uncertainty
and probability distributions, using variation about an expected value to objectively
represent the risk of alternatives. Larger variation or range in the distribution of d¢cision
variables means more risk. Utility theory takes risk measurement in a different direction,
assessing the subjective preferences of a decision maker for risk in deciding between
different options. Typically, our decision makers will be risk averse, preferring less

uncertainty to more. It is possible to look at alternatives by separating them into measures
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of value (e.g. expected value, utility) and measures of risk (e.g. variance, Jia and Dyer’s
standard measure of risk), using objective or subjective measures.

Our concept of risk from Chapter I includes both uncertainty and the likelihood
and severity of possible unfavorable events. Probabilistic methods are best used to
quantify the subjective uncertainty involved with innovative technologies. Expression of
each technology alternative through probability distributions of key decision variables will
describe the probability of getting undesired cost, schedule, and performance outcomes in
a way that satisfies our concept of risk.

Our definition of technical risk, then, will be the probability and associated
consequences of achieving undesired outcomes in our key decision criteria of cost,
schedule, and performance, expressed through subjective probability distributions. The
risk embodied in these probability distributions can then be measured in different ways as

desired.

2.2 Risk and Program Management

2.2.1 Risk Management and Risk Assessment. There has been a large number of
articles, reports, and books published over the past decades that deal with various aspects
of risk. Just as different definitions of “risk” are used, the practice of dealing with risk has
been labeled and categorized in many different ways. This has been a source of continuing
confusion in the literature.

The DOE uses its own terms to refer to the way health and environmental risks are

examined in doing its day-to-day business. These definitions include 1) risk assessment:
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technical assessment of the nature and magnitude of risk; 2) risk characterization: final

phase of risk assessment process that involves integration of the data and analysis involved
in hazard identification, source/release assessment, exposure assessment, and dose-
response assessment to estimate the nature and likelihood of adverse effects; and 3) risk
analysis: methods of risk assessment as well as methods to best use the resulting
information [DOE, 1995¢:67-8]. Since this study deals with cost, schedule, and
performance risk, however, we need to look elsewhere for useful terms.

A clear distinction between risk assessment, risk analysis, and risk management is
not widely accepted in the literature. The Defense Systems Management College in the
report Risk Management: Concepts and Guidance defines “risk management” as the
overall umbrella title for the processes that identify and manage risk. The report identifies
two basic stages: planning and execution. Figure 2.7 shows the breakdown of their

terminology [DSMC, 1989:4-1-2].

DSMC Risk Management Terminology

Risk Management
I
I | I I
Planning for Risk Risk Risk |
Risk Mgmt Assessment Analysis Handling j
Figure 2.7 |

The purpose of risk management planning is “to force organized purposeful

thought to the subject of eliminating, minimizing, or containing the effects of undesirable
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occurrences” [DSMC, 1989:4-3]. This should be part of the overall planning begun
before the program is initiated, including an integrated program schedule, and the resulting
“risk management plan” should be updated as a matter of course during the program life
span. The intended approach to identifying, assessing, analyzing, and handling the risks in
the program should be laid out in this planning stage and kept current [DSMC,
1989:4-3-4].

The execution phase of this suggested risk management scheme then turns to
identifying and describing the risks to the program through interviews of experts, the
construction of analogies and baselines, and examination of the program plans. This is
part of what DSMC calls “risk assessment,” which leads to the comparison of program
strategies with regard to the identified and roughly quantified risks. This process is not
clearly separate from “risk analysis,” which is an examination of the change in
consequences to the overall program or sub-program caused by changes in those factors
influencing the risks (i.e. sensitivity analysis). More sophisticated mathematical tools are
used in this element of risk management, and the results are used in direct support of the
program’s decision makers. The transition from risk assessment to risk analysis is gradual
over time, as a program matures [DSMC, 1989:4-5-10].

The last element, “risk handling,” is the action taken to address the issues identified
and evaluated in the risk assessment and analysis efforts. Avoidance of higher risk
choices, attempts to prevent the occurrence and mitigate the effects of undesired events,

and attempts to share the potential consequences across organizational and government-
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contractor lines are performed. The acceptance of some level of risk has be made by the

program decision makers in balancing the risks with their associated costs of prevention
[DSMC, 1989:4-10-13].

This study fits the risk assessment definition well. By examining the programmatic
and performance characteristics of candidate remediation technologies, the likelihood and
associated consequences of budget and schedule problems of the national remediation
program will be identified, within the limits of the gathered project data. The overall
model development sponsored by the Landfill Focus Area is part of its risk management
planning, providing a tool for risk assessment in the early parts of their program.

2.2.2 Technological Forecasting. The term “technological forecasting” is
generally used to denote forecasting techniques focused primarily on predicting
technological change over the long term. Technological techniques require imagination
combined with individual talent, knowledge, foresight, and judgement to these changes.
Use of these methods requires an understanding of the factors involved with each situation
and the need to adapt the method to that situation [Makridakis, et. al., 1983:637].

The most important things about any forecasting effort is that it be credible and
useful to a decision maker. If it lacks utility for the decision-making process, it is a failure.
The methods used to process the best available information must be clearly descﬁbed,
methodologically sound, replicatable, and logically consistent. Assumptions and the
confidence that can be placed in the forecast must be understood by the decision maker

[Porter, et. al., 1991:52].
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Millett and Honton broadly define technology forecasting as “the process and
result of thinking about the future, whether expressed as numbers or in words, of
capabilities and applications of machines, physical processes, and applied science”
[1991:3]. Other definitions include the process of predicting the future characteristics and
timing of technology [Meredith and Mantel, 1995:711]. According to Millett and Honton,
technology forecasting should ideally provide a forecast of the future technological
environment, suggest alternative technology strategies to managers, and evaluate these
strategies to see which will produce the desired results [1991:ix].

These forecasts are guides for future action. As such, their accuracy is unknown
when they are produced. The time horizon of the forecast is the best determinant of
accuracy — the shorter the time horizon, generally the more accurate the forecast. Even
inaccurate forecasts can be valuable, if the lessons drawn from them by decision makers
are useful [Porter, et. al., 1991:54-5].

Care must be taken with technological forecasting, however. Meredith and Mantel
emphasize that it is most appropriate when applied to future capabilities, not the
characteristics of specific devices [1995:714]. Since we hope to assess the characteristics
and timing of specific technologies, we should heed this caution and proceed carefully.

2.2.2.1 Quantitative vs. Qualitative Forecasting. A distinction should be
drawn between traditional forecasting approaches and what is required for our problem.
The structure of the traditional, general univariate quantitative forecasting problem is

roughly where we have past values, up to some time z, of a random process X, ..., X, X,
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» X,, and wish to forecast the value X,,,, which the process will assume at the future time
t+m. In constructing the forecast £,,,, we are answering the following questions: 1) What
class of random processes are we considering? 2) What general class of functions of {X;
s < t} are we considering for £,,,,? 3) Having chosen the general class of functions, what
criterion of the accuracy of the forecast £,,,, should we use to determine the explicit form
of %,,,, as a function of X,, X, ,, ...? Different answers to the second question lead to
different functional forms and usually to different forecasts. Given satisfactory answers to
the three questions and the true value of X,,,,, the “optimal” forecast is uniquely
determined assuming the covariance structure of the X, ..., X,,, X, ;, X,, is known
[Priestly, 1974:152].

It is important to note that the assumption that the future is a continuation of the
past can be unjustified. Quantitative forecasts (based on the above definition) are
conditional based on the past data and these assumptions being true. This can be a
dangerous assumption to use without a meaningful theory of cause and effect [Millett and
Honton, 1991:7-8]. Although the relationship between future variables is expected to be
the same as in the past, in fact the validity of these assumptions is doubtful, as the future
rarely follows directly from the past. If it did, simple trend extrapolations would be fairly
accurate forecasts — but it is precisely because they are usually not that more |
sophisticated means of quantitative forecasting such as regression, econometric models,
and systems dynamics were developed. These latter techniques recognize that the world is

more complicated than simple forecasting models allow [Millett and Honton, 1991:40]

2-30




Millett and Honton’s view is that these quantitative forecasts are a very important
set of tools, but that they may be overemphasized and overrated, especially when one
considers that their basic assumptions are about as valid or invalid as the expert judgement
used for more qualitative forecasting. They are best used for forecasting near term events
of up to two years [1991:41].

2.2.2.2 Classification of Technological Forecasting Techniques. Millett
and Honton break up technology forecasting into three distinct categories: trend analysis,
expert judgement, and multi-option analysis [1991:3]. Other classifications include
Makridakis, et. al., who break the field up into subjective, exploratory, and normative
approached [1983:639] and Porter, et. al., who use categories of monitoring, expert
opinion, trend analysis, modeling, and simulation [1991:93-7].

Millett and Honton’s trend analysis is the same as the quantitative forecasting
described by Makridakis, et. al. [1983] and the trend extrapolation of Meredith and Mantel
[1995:714-21], being the projection of past trends into the future as described above. One
specific technique that they describe which is relevant to our remediation technology
selection problem may be the use of historical analogies. Simply put, this is studying
historical data from other similar technology development efforts to draw useful inferences
for the project in question. This presumes that relevant data exist [Millett and Honton,
1991:25-6].

Expert judgement is the “assertion of a conclusion based on evidence or an

expectation for the future, derived from information and logic by an individual who has
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extraordinary familiarity with the subject at hand” [Millett and Honton, 1991:43]. This fits
with our general use of the term expert opinion. Makridakis, et. al., describe subjective
assessment methods in similar terms. They point out that, due to the subjective nature of
these methods, the reliability of the results is often questionable. Consequently such
results are often stated in terms of probability distributions and intervals, rather than single
point estimates [1983:639].

These experts should possess three important characteristics: substantive
knowledge in a relevant field or domain, the ability to cope when faced with uncertain
extensions of that knowledge, and imagination [Porter, et. al., 1991:203]. Porter, et. al.,
believe that forecasts made by groups of experts are so much safer than those produced by
individuals alone that they recommend not using expert judgement at all unless a group of
experts from the relevant fields can be identified and recruited. Individuals acting alone
can make wildly inaccurate estimates [1991:94]. While including other experts in the
process may help exclude errors, they introduce other problems that have to do with
group behavior.

Millett and Honton’s discussion of this form of forecasting, which includes
interviews, questionnaires, and group discussion methods, is heavily cited in the section on
gathering expert opinion below. They point out that all methods of forecasting and
analysis, to some degree or another, involve expert judgement, whether it is one person’s
or a group’s, whether it is expressed in numbers or in words. However, expert opinion

becomes particularly important in the analysis of highly uncertain and complex topics such
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as ours. Many successful managers trust their intuition, which must be of some service or
else they would not be‘successfull These same managers can be very skeptical of other
people’s expert judgement and demand justification of it based on logic and information
before they will easily accept it. Millett and Honton judge that expert opinion alone is not
a very satisfying forecasting method, but that it is an excellent method of gathering
information for use with other methods [1991:43-44, 61].

Multi-option analyses is different than the other two categories that Millett and
Honton use, in that these techniques examine alternatives in multiple possible futures
instead of trying to nail down the one single future that is actually coming. This
distinction is due to the way multi-option techniques accept the fact that we can never
know what the future will be with sufficient certainty, and so they estimate likely
alternative futures and plan towards at least one of them. These “multi-option”
approaches are typically used by organizations that face repeated and significant changes
in their operating environments. Millett and Honton describe scenarios, simulations,
paths/relevance trees, and portfolio analysis as multi-option analysis techniques [1991:63].
Scenarios are also mentioned by Meredith and Mantel and Makridakis, et. al., and may be
applicable through hypothesizing a worst case future, a best case, and a future where
current trends continue. Organizational, economic, political, and social variables should
be included as well as technological ones [Meredith and Mantel, 1995:724-5].

Many of these multi-option procedures are not generally accepted as “forecasting”

techniques, at least not by quantitative forecasters. Whatever they may be called, Millett
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and Honton state that these methods are certainly strategic planning and analysis
approaches that are used with more than just technology, and do well with relating
technologies with non-technical factors [1991:63-5].

2.2.3 Cost and Schedule Estimates. While this study is not intended to examine
cost estimating in detail, risks involved in estimating the development and implementation
costs of innovative technology are crucial issues for technology managers. Examples from
DoD experience may be illuminating, as the procurement of new military hardware is
similar in some respects to the development of innovative remediation technology. Most
new weapons and other equipment contain new, untried technology [Biery, 1986:14] that
are often not transferable to the commercial world.

The structure of the defense industry and the way military equipment is procured
leave little encouragement to defense contractors to deliver goods on time and within
budget. Indeed, the manufacturers have every incentive to make highly optimistic cost
and schedule forecasts in order to win contracts. The sponsors are also motivated to
accept optimistic forecasts to convince Congress and their supervisors that the program
can fit into this year’s budget. After the contract is awarded, there are few mechanisms
available to control costs and schedules, so extra costs and time must often be
accommodated since the only other choice would be to cancel the program and start all
over [Biery, 1986:14].

The technology manager must understand that few programs will meet his or her

initial development and production plan [Biery, 1986:14].
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2.2.4 Relationships Between Cost, Schedule, and Performance Risk. In some
ways, risk management of innovative technologies is a zero-sum game. There will always
be some intrinsic risk associated with novel development efforts that cannot be eradicated
but can be portioned out between cost, duration, and the quality of performance for the
project. This trading off may not happen in a quantifiable way, but is an often recognized
risk management practice (e.g. expending more funds in an attempt to speed up
development) [Klein, 1993].

Historically the majority of cost overruns in DoD weapon system procurement are
due to schedule problems or technical difficulties, not underestimating costs. A recent
study concluded that about 75% of cost growth in DoD programs was due to factors
external to the program, such as unexpected changes in performance specifications,
acquisition strategy changes, and budget difficulties. The rest were due to cost and
schedule estimate errors and inadequately scoped engineering and software development
efforts [Biery, et. al., 1994:75]. Schedule slippage is often the manifestation of technical
problems, which then require greater than anticipated resources to complete [Biery, et. al.,

1994:75].
The interrelationship of technical cost, schedule, and performance risks can be

made clearer through careful analysis. This valuable understanding of the risks involved is

what studies like this one try to bring to the decision maker.

2.3 Dealing With Expert Judgement
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As RAND analyst E. S. Quade observed about 25 years ago, “Intuition and
judgement permeate all analysis... As questions get broader, intuition and judgement must
supplement quantitative analysis to an increasing extent” [quoted in Millett and Honton,
1991:43]. We must use expert judgement to judge the risks of emerging technology.
Obtaining and quantifying input data is probably the most crucial part of performing risk
assessments. It is a crucial but generally overlooked issue [Hudak, 1994:1025]. As such,
it deserves detailed attention.

2.3.1 Subjective vs. Objective Information. Much of the input required in a risk
assessment can only be found through information gathered from experts. In many cases
this information will be very limited and may contain gross assumptions by an expert
trying to bound the desired data with a lowest and highest conceivable value [Hudak,
1994:1026]. In assessing technical risks, analysts often find only one or two specialists
sufficiently familiar with the program and technology to offer an assessment. These
assessments are based on personal judgements [Biery, et. al., 1994:64].

Estimated probabilities are often used to build input distributions of random
variables for simulation and other analyses, such as in this study. For our decision support
model to be valid and accepted, it is impértant to understand common difficulties with
subjective probability estimates of the sort used here. The choice of the family of

distributions used is a crucial one.
Abstracting uncertainty with subjective probability distributions may or may not

lead to better risk management, but such action often creates the illusion of doing so
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[Troxler and Schillings, 93:230]. Care must be taken to avoid confusing these formalized
expressions of uncertainty with statements of fact, especially with the decision makers.
These subjective distributions are two steps away from the real world behavior being
modeled — we are first saying that the future will be one of a set of potential outcomes,
then we are estimating what the likelihood of those outcomes are (subjective uncertainty).
Accurate objective data is always preferred, but when it is not available we must work
with the best estimates we can get.

There is a danger when using experts of falling into the “expert halo” trap. Itis
easy to place undue credence on the opinions of experts. The analyst has the prestige of
“expert” authority behind his or her study, while the uncritical decision maker is more
likely to feel snug and secure under the protective umbrella of an impressive array of
expert opinion. This tendency can make no one accountable, especially when estimates
are made from group techniques such as the Delphi method. The analyst or decision
maker can always claim that he or she was using the best advice possible and he or she is
not responsible for what the experts say [Sackman, 1974:34]. While there are elements of
truth to this, responsibility must still fall on the analyst.

2.3.2 Quality of Expert Opinion. Selecting experts to provide estimates is a
problem in and of itself. Especially in cases of innovative technology, the set of potential
sources of information may be quite limited. Chicken describes one way to discriminate
between potential sources of expert estimates by quoting the methods advocated by the

World Bank in selecting consultants [1994:177-8]. Adapting this method to our
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requirements results in a subjective scoring scheme based on three criteria: a firm or
individual’s general experience with the technology in question, the proposed work plan
for developing the estimate, and the qualifications of the key person(s). These three

criteria are scored on a scale of 1 to 100 by the evaluator. The overall rating is obtained

3
S - w. S,

,-Z.:x C (2.3)
0.15 s+ 0.35 5, + 0.5 s,

Adaption of the World Bank’s Guidelines for Selecting Consultants

Criteria Score Range of Weights w; and
(1-100) Typical Value

Firm or Individual’s $q 0.1-02
General Experience 0.15

Work Plan S, 0.25-04
0.35

Personnel Qualifications S3 0.4-0.6
0.5

Table 2.1 [Chicken, 1994:177]

by a weighted sum of the three criteria, where the weights are determined by the
evaluator based on his or her judgement of the criterion’s significance. Table 2.1
describes the suggested weights. The resulting overall scores, using the typical criteria
weights recommended by the World Bank, would then be:The higher the overall score, the

better the subjective evaluation of that source of expert opinion. Note that the World
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Bank’s advised weights make the qualifications of the key personnel three and a third
times as important as the firm’s experience with the technology [Chicken, 1994:49-50].

2.3.2.1 Training Experts to Provide Information. One way to avoid
biased estimates is to train the experts providing the estimates first. Guidelines and
definitions can be worked out ahead of time in insure consistency across the range of
experts. While this is an obvious suggestion, orientation and training is often overlooked
[Biery, et. al., 1994:68]. Makridakis, et. al., note that even individuals who know a lot
about the variable to be estimated may have trouble making subjective probability
assessments, unless they are given guidance on how to proceed [1983:647].

2.3.3 Soliciting Information From Experts. There are many ways of gathering the
opinions and assessments frorﬁ the key people found to have the necessary special domain
competence required for a technology forecasting study. The manner in which this
information is gathered can have a large effect on the results, and so every effort should be
made to make this communication process as clear and unbiased as possible. Little
attention is often given to the critical step of acquiring expert judgement [Hudak,
1994:1025]. Therefore, we will discuss it in some depth.

2.3.3.1 Interviews. Interviews are a well-known and often practiced
technique to gather information from experts. Virtually all corporations and analysts
doing technology forecasting use interviews to gather information. The interview
attempts to gain the in-depth judgement of the expert about the topic and goes beyond the

more limited and structured form of written expert judgement found in a literature review.
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Unless just one person is known or trusted to have all the information required to provide
the forecast, conducting and synthesizing the results of numerous interviews is necessary

[Millett and Honton, 1991:45-7].
There are several books and articles which give advice on planning and conducting
interviews, but some basic practices taken from Millett and Honton are:

a) Plan the interview. The interviewer needs to give thought to whom
should be interviewed and why. Interviews of experts should not be planned and
conducted carelessly. The types of information needed should be identified first, then the
names of people expected to supply it should be found. The number and extent of the
interviews depends on the amount of time and funds available, balanced against the
importance of the information. Questions should be written down in advance, to help
capture the information the interviewer needs.

b) Conduct the interview in person or by telephone. Shorter interviews can
be conducted by phone, but longer ones should be done in person. Face-to-face
interviews have several advantages: the subject is more free to respond to questions in his
or her own way, additional information in the form of facial expressions and body
language can be gathered, and a personal rapport between interviewer and subject can be
established. Phone interviews are less expensive in both time and funds, however.

¢) Coordinate the interview with the subject in advance. The time and
place of the interview should be agreed on beforehand. A letter explaining the purpose of

the interview with perhaps sample questions should be sent in advance to the subject.
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d) Always telephone when previously arranged and arrive for the interview
on time. The interviewer is the supplicant — exhibiting bad manners is a poor research
technique.

e) Ask questions in your own way and let the subject answer in his or her
own way. Let the subject provide additional insight or information outside the formal
structure of the planned interview. The interviewer must take care to listen to what the
subject says, not what is expected. The interview should be a fair and realistic gathering
of information, with the interviewer disturbing the results as little as possible [Millett and
Honton, 1991:46-7].

The interview should be recorded in some way, either through taping or through
detailed notes or transcription by the interviewer. If taped, care should be taken to inform
the subject that he or she will be recorded. Their approval is required. This record should
remain part of the project’s documentation for later reference.

2.3.3.2 Questionnaires. Questionnaires are generally interviews prepared
as written questions, to which the subjects reply without the presence of an interviewer.
One can survey many more experts through questionnaires than through interviews. Many
experts can be contacted at once, allowiﬁg a statistically large sample to be gathered
where sufficient numbers of experts exist. The questionnaire can solicit information
according to the specific structure required, in the terms and units specified to be
compatible with the planned analysis. Responses from the subjects can be saved as part of

the project documentation so that no information is lost [Millett and Honton, 1991:48-9].
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A significant disadvantage is that the structured questions and answers keep
subjects from saying exactly what they think. The structure limits the information that can
be gathered to merely what was thought of during construction of the questions. One can
get answers to what was asked, but there is no guarantee that the questions being asked
are the right ones. Care must be taken that the writer of the survey and the respondent
utilize the same definitions of terms used in the subject matter. Questionnaires can be
misleading and confusing, and even irrelevant. Furthermore questionnaires are often
costly and time consuming, as they require time and money to construct and refine, send
out, and compile the answers. Of course, not all the recipients will respond — Millett and
Honton suggest that a 75% return rate is excellent, and that even 25% can be acceptable
[1991:48-9].

Constructing and executing questionnaires is a key task in survey research. There
are a number of works on this topic (in particular, see Sudman and Bradburn, Asking
Questions: A Practical Guide to Questionnaire Design (San Francisco: Jossey-Bass,
1982)). Millett and Honton suggest the following:

a) As with interviews, determine the kind of information required and why
it is necessary before constructing the questionnaire. The purpose should guide the
structure.

b) Select participants carefully to assure participation. While the ideal case
would have all the participants and their specialties being known by the questionnaire

builder, generally a proven mailing list of the kinds of needed experts is best used. The
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group of recipients should have the necessary domain knowledge required for the
estimates being sought.

c) Keep the questionnaire as short as possible. The shorter the
questionnaire, the more likely the recipients will fully complete and return it. The
questions should be focused on the goal and not be extraneous.

d) Structure the questionnaire, but leave the subjects the opportunity to
express their own views. The questions should not solely be “true/false” or multiple
choice. There should be essay-type questions that ask the subjects to use their own
words. The questionnaire should include space for subjects to add their own questions
and add other comments.

e) Make the questionnaire as user-friendly as possible. The structure and
mechanics should be simple and concise [Millett and Honton, 1991:48-9].

2.3.3.3 Delphi Method. The Delphi method is undoubtedly one of the
most commonly used technological forecasting methods [Makridakis, et. al., 1983:652;
Sackman, 1974:3] and is one that many experts have some familiarity with. As such, it
deserves special mention.

This approach was originally developed at RAND Corporation and is essentially a
method of obtaining a consensus from a group of experts. As such, it is often used to
generate a consensus forecast. The objective of the Delphi method is to obtain a reliable
consensus of opinion while minimizing the undesirable aspects of group behavior. Its

application requires a group willing to answer specific questions relating to new
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technological processes. These experts do not meet to debate these questions, but instead
are kept apart from each other to prevent them being influenced by social pressures or
other aspects of group interaction. This is often done through correspondence, arranged
by a coordinating moderator [Makridakis, et. al., 1983:652-4]. An iterative approach of
questioning takes place, with successive rounds including results from the previous round
showing the items on which there was a general consensus. Each iteration may be
accompanied by selected feedback from the experts. The anonymity of the participants,
use of statistical measures to describe the previous results, and the iterative polling with
feedback are meant to produce authentic consensus and valid forecasts [Sackman,
1974:4].

The approach is meant to allow a spread of opinion that reflects the uncertainties
underlying the specific technological issues under examination, while narrowing the inner
50% quartile range as much as possible without pressuring the experts so much that
deviant opinions are not allowed. This is achieved by asking non-conforming experts to
justify their positions [Makridakis, et. al., 1983:654].

Advantages of Delphi include low cost, versatility, ease of administration, minimal
time and effort on the part of participants and moderators, and the simplicity, directness,

- and popularity of the method [Sackman, 1974:31].

Despite its prevalence, the Delphi method has several flaws. Many of the

difficulties with the Delphi method or with any questionnaire result fundamentally from a

problem of sampling. Despite generally small sample sizes, statistical analysis and testing
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is often not done. Graphs of the inner quartile range are often the only way the results are
presented to decision makers. The statistical representativeness and experimental rigor of
Delphi studies has been called into question [Sackman, 1974:14, 28-9].

Using the central tendency of pooled opinion as the best estimate of expert opinion
may not be the best ... Instead of the experts converging to a single consensus, studies
using factor analysis have found subgroups of experts that cluster together with consistent
opinions [Sackman, 1974:29].

A concise summary of the objections to the Delphi method was made by Weaver in

1972:

At present Delphi forecasts come up short because there is little

emphasis on the ground or arguments which might convince policy-makers

of the forecasts’ reasonableness. There are insufficient procedures to

distinguish hope from likelihood. Delphi at present can render no rigorous

distinction between reasonable judgement and mere guessing; nor does it

clearly distinguish priority and value statements from rational arguments,

nor feelings of confidence and desirability from statements of probability

[quoted in Sackman, 1974:31].

One way to mitigate these criticisms is to avoid using the Delphi approach to make
the forecasts themselves. A Delphi session can instead be used to create the inputs to
other forecasting methods, applying Millett and Honton’s advice about expert judgement
[1991:61].

2.3.3.4 Other Group Methods. There are many other forecasting methods

using groups of experts besides the Delphi approach. In general, the motivation is to

build a better, more representative estimate than could be done individually.
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One technique is called “idea generation,” which is not precisely a technology
forecasting method but serves as a way to generate input information for forecasting or

planning. Idea generation is a somewhat more organized form of brainstorming, and is

27 4< 7 <<

similar to what others call “focus groups,” “idea groups,” “creative sessions,” and so on.
It is bringing together a relatively small group of experts to generate thoughts on a defined
problem for a stated goal. These goals include identifying: new applications for existing
technologies or products, candidate technologies for a current need, issues and factors to
be included in a larger forecasting method, and implications and candidate strategies from
forecasting studies to be included in management planning. This method identifies ideas
without evaluating them further [Millett and Honton, 1991:53-4].

The procedure for idea generation are to convene a group of eight to ten experts
and brief them on the topic and the process to be used. The experts are allowed to
interact through speaking or writing, while a moderator records ideas on large sheets of
paper tacked to the walls of the meeting room for continuous review. The group
interaction is terminated when the experts show signs of fatigue and/or the discussion
starts to wind down. The experts then openly vote on the five to ten ideas they like best.
This open voting allows for some consensus and group influence, although it is not
required or forced. A written report documents the ideas and the results of the voting
[Millett and Honton, 1991:54].

This method works best with a small group of creative experts who know and

respect each other, discussing limited topics with little emotional or organizational politics
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content. The experts must remain civil and not attack one another’s ideas [Millett and
Honton, 1991:54-5]. As a group interaction method, however, some of the same
criticisms of the Delphi method apply.

Another group approach to expert opinion is the nominal group method,
originating with Professors Delbecq and Van De Ven at the University of Wisconsin at
Madison in the late 1960s and early 1970s. It has a more concrete structure, designed to
handle situations where other group methods fail to be constructive: when argumentat_ive
and/or domineering people must be included, when people who do not know or like each
other are involved, when managers and staff members are mixed together, when the topic
is sensitive or controversial, or when organizational politics need to be managed carefully
so the group exercise does not do more harm than good [Millett and Honton, 1991:55-6].

The nominal group technique can be used for the same purposes as idea
generation, and can also be employed to generate criteria to evaluate or screen alternatives
of a decision. The procedure for this technique includes a briefing of the experts on the
topic and the method being used. Ideas are silently generated on paper by each expert
before any discussion begins. Each expert then shares one idea from his or her list, going
around the room in turn. This allows each individual an opportunity to share his or her
ideas. Questions are allowed for clarification, but not debate or even comments on the
virtue of the speaker’s ideas. The moderator records these ideas on large sheets of paper
mounted around the room, as in idea generation. The round robin of experts taking turns

speaking lasts for a number of rounds or until a time limit is reached (three or fours turns
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and a minimum of two hours is recommended). Once this has been reached, the ideas are
reviewed and checked to see if any ideas can be consolidated to reduce redundancy. Ideas
are only combined if no one objects. Each expert then votes privately on the best subset
of ideas, ranking them according to some scoring scheme determined by the moderator.
The voting results represent the amount of consensus on the “best” ideas. The moderator
tabulates the votes immediately so that all the participants know the results before they
leave. A follow-up report documents the procedure, list of ideas, and the results [Millett
and Honton, 1991:56-7].

_ These group dynamics approaches offer a combination of creativity and group
participation. They require an experienced and talented moderator who knows how to set
the proper friendly and businesslike tone and manage the group of experts, and who must
not seem biased to the participants. Preparation should be extensive, including the
selection of participants and the preparation of invitations and instructions mailed ahead of
time. The location of the meeting should be away from the normal workplace of the
experts, free from telephones and other distractions. The experts must be selected
carefully. Participants must have familiarity and experience with the topic, but do not
have to be the preeminent experts on the subject matter. They must also be reliable,
certain to show up and contribute according to the instructions given. Only about eight to
twelve people should be included in one group session, although multiple sessions on the

same topic can be held and later combined. In general, these group sessions should take
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between a half to a full day. More than one day will result in the experts getting restless

and contributing less meaningful ideas [Millett and Honton, 1991:58-9].

Millett and Honton Strongly recommend that at least two separate group sessions
should be conducted for forecasting purposes: one of in-house or “company” people, who
provide microscopic expertise and a organizational “buy-in” to the subsequent results, and
one of outside experts for a macroscopic perspective without in-house bias. These
different groups will generate contrasting and illuminating results [Millett and Honton,
1991:58].

2.3.3.5 Problems With Group Methods. Open discussion between groups
of experts involves interactive human behaviors. There are sometimes problems with
these behaviors that can bias the resulting consensus estimates. Some of the group
approaches mentioned above attempt to prevent some or all of these difficulties, but one
cannot get the advantages of group estimates without potentially suffering from their
pitfalls.

Some of these pitfalls include [taken from Meredith and Mantel, 1995:730]:

a) The Halo/Horn effect: A person’s reputation (good or bad) or the
respect (or lack thereof) in which a participant is held can influence the group’s thinking.

b) Bandwagon effect: There is pressure to agree with the majority (indeed,
this consensus is the objective in most group techniques).

¢) Personality tyranny: A dominant personality forces the group to agree

with his or her opinion.
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d) Time pressure: Some people may rush their thinking and offer estimates
without sufficient reflection, just as to not delay the group.

e) Limited communication: In large groups, not everyone may have the
opportunity to provide input. The more aggressive or loudest group members may have
an exaggerated effect on the group opinion (this is what the nominative group technique is
meant to counter).

There is the fundamental issue of consensus estimates to be resolved, as well. The
Delphi method as well as the other group techniques mentioned above rely on the claim
that pooled expert opinion is more effective than individual judgement. Instead of
combining independently generated individual opinions (such as described below in section
2.3.5), the process of feedback and interaction between the group participants creates
highty correlated results as the group converges to conclusion. Social psychologists have
known of powerful tendencies for indjviduals to conform to group opinion in relatively
unstructured situations, particularly if they are not highly motivated. It is possible that the
consensus formed through these group interaction methods is a product of this behavior,
not mutual education and analysis [Sackman, 1974:45-7]. Still, whether the group
interaction is highly structﬁred as in the nominal group technique or as free-form as a staff
or committee meeting, group forecasting is pervasive throughout program management
and must be included as another tool for technology management.

2.3.4 Probability Distributions for Use In Subjective Probability Estimates.

Many of the techniques used in risk analysis require input variables that represent
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characteristics of the system being studied, whether that system is a release pathway for
hazardous materials, a safety evaluation of highway routes for radioactive material
transport, a model for total life-cycle cost of remediation activities, and so on. When data
can be collected on these inputs, traditional ways can be used to specify the actual
distribution of the values of the input over its range. The two techniques generally used
are: using standard methods of statistical inference to “fit” a theoretical distribution form
to the data, with parameters selected by goodness of fit; or by using values of the data
themselves to define an empirical distribution [Law and Kelton, 1982:155-6].

But in assessing emerging technology, we do not have the opportunity to observe
sufficient data for either of these methods in most cases. Choosing a distribution in the
absence of data relies upon the subjective estimates of expert judgement. Through theory,
past experience, or understanding of the limitations of predictions, some form of
distribution is selected by the analyst or expert to represent the random variable. The ideal
distributions for cost and schedule subjective probability estimates are unimodal,
continuous, of finite range, and capable of taking a variety of shapes or degrees of
skewness [Biery, et. al., 1994:69].

There are four commonly used distributions for expressing subjective uncertainty
through expert opinion. The uniform, triangular, beta (and the specific PERT beta), and
gamma distributions are all candidates, with their specific pros and cons. While the
normal distribution is one with which most engineers are familiar, the infinite tails lead to

problems with risk assessment and technology forecasting. Specifically, the infinite
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negative tail creates the potential for negative costs or completion dates. It is not
appropriate here.

The first step is to identify an interval of values that the random variable takes on,
through asking the expert for their most pessimistic and most optimistic estimates. Let
these interval endpoints be called a and b, where a < b. Once this has been done, other
questions are asked as necessary to try as assess the other parameters of the assumed type
of distribution [Law and Kelton, 1982:204-5].

2.3.4.1 Uniform Distribution. No other parameters need be estimated for
the uniform distribution. Probability is evenly distributed between the two endpoints.
Figure 2.8 shows a uniform distribution.

Uniform distributions are often used as a "first cut" at describing variables that are
known to vary inside an interval but about which nothing else is known [Law and Kelton,
1982:158]. This is one way to transform the intervals described in section 2.1.2.2 for use

in simulations.
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Uniform Distribution Characteristics

Parameters a,b
Range [a, b]
—1-— a<x<b
Density f(x)=\b-a
0 elsewhere
0 x<a
Cumulative Distribution F(x) - : = a<xsb
-a
1 x>b
Mean a-b
2
. (b - a)?
Variance A S
12
Mode does not uniquely exist
Table 2.2 [Law and Kelton, 1982:158-9]

Uniform Distribution Function

Figure 2.8
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Triangular Distribution Function

Figure 2.9

2.3.4.2 Triangular Distribution. The triangular distribution requires one

other parameter to be fully specified, in addition to the interval endpoints. Experts are
also asked to estimate the most likely value of the random variable, m. Armed with these
three parameters, a, m, and b, a triangular distribution such as the one shown in Figure 2.9
can be used to represent the random variable of interest, x. Table 2.3 describes the
mathematical characteristics of triangular distributions.

The triangular distribution is often used as a rough model in the absence of data
[Law and Kelton, 1982:167].

The triangular distribution is easy to use mathematically and can take many

unimodal shapes through changing the three parameters a, b, and m [Biery, et. al.,
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1994:71]. If a =m or b = m, a right triangle is formed extending to the right or left,

respectively [Law and Kelton, 1982:168].

Triangular Distribution Characteristics

Parameters a,b,m
Range [a, b]

_Ax-a) asxsm

(b - a)(m - a)
DenSity fx) - ________2(b - %) m<xc<5»

(b -a)b-m)

0 elsewhere
' 0 x<a
2

_(x-ay a<x<m
Cumulative Distribution F(x) = (b - a)(m - “)2

1‘————(b-x) m<x<5bd

(b - a)(d - m)

| 1 x> b

Mean a+b+m
3
Variance a’?+ >+ m?-ab-am-bm
18
Mode ¢
Table 2.3 [Law and Kelton, 1982:167-8]

2.3.4.3 Beta Distribution. The beta distribution requires two additional
parameters to be specified, « and . These parameters are not easily explained, as they
interact to specify the shape of the distribution. This flexibility allows the beta distribution
to taken on an infinite number of unimodal and bimodal shapes over the interval [a, b] (the

bimodal shapes are restricted to only those distributions with modes at the endpoints).
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Figure 2.10 shows a typical unimodal beta distribution of the type often used in schedule
and cost distributions.

A special case of the beta distribution that has been used for years in program
management is the PERT beta, named for when it was first introduced for use with PERT
charts. This technique uses the upper and lower limits together with the mode, m, to
approximate a beta distribution’s mean and variance [Keefer and Bodily, 1983:596]:

PERT mean = arm-b 2.3)

6

b -a
6

)? (2.4)

PERT variance = (

Beta Distribution Function
for alpha = 5, beta = 2

plrobabilitx

Figure 2.10
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The PERT beta is a three point discrete approximation of an actual continuous
beta distribution. Its accuracy in approximating the mean and variance is poor, especially
when compared to other three point methods such as the extended Pearson-Tukey [Keefer
and Bodily, 1983:601-2]. The original PERT assumption that the duration standard
deviation is one sixth the range, generated from a general appreciation of project activities,
has been discredited [Williams, 1992:266]. Because of its shortcomings and despite its

previous popularity, we will not use the PERT approximations anywhere in this study.

Beta Distribution Characteristics

Parameters ab, a, B
Range [a, b]
e-1 _ -1
Density f&) - z B((lu ;)) y=[as+(b-a)x],asx<bh
| , 0 elsewhere
1
where B(a,p)- [ t* 11 - t)f ~ldr - T(e)r(B)
'!; F(ﬂ + B)
Cumulative Distribution no closed form
Mean aff + ab
o + ﬂ
Variance xp(b - a)
(&« BY2(w + B+ 1)
Mode _e-1 when & > 1, > 1
[ 2 + B + l
[Law and Kelton, 1982:167-8; Devor, 1987:163]
Table 2.4
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2.3.4.4 Gamma Distribution. The gamma distribution is not bounded by
an upper endpoint like the distributions mentioned above. Instead, it has an infinite tail.
Two parameters are needed to fully specify a gamma distribution, « and 8, where « is a
shape parameter and f3 is a scale parameter. Since the range of a gamma distribution goes
from O to infinity, one can represent a different lower limit by just starting the distribution
at that point. Then a third parameter representing the lower limit is needed.
Gamma distributions are traditionally used with variables that have no upper limit,

such as the time to accomplish some task [Law and Kelton, 1982:159].

Gamma Distribution Function
for alpha = 2, beta = 1

probability

Figure 2.11
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Gamma Distribution Characteristics

Parameters a, o, p

Range [a, =)

Density f(x) -
Cumulative Distribution F(x) - 1-e

Mean ' a+ap

Variance o p?

Mode a+pBa-1)ifa>l,aifa<l
Table 2.5

a1 (

a<zx
elsewhere
X - a\j
Y
B a <x
J!
elsewhere

when « is an integer, otherwise no closed form

[Law and Kelton, 1982:159]

2.3.4.5 Choosing A Family of Distributions. The distribution used for

representing input variables is an important choice when representing risk or uncertainty.

The type of distribution becomes a framing question for soliciting information from

experts about the random variable. Five criteria can be applied to help choose the type of

distributions [from Williams, 1992:268]:

a) Easily understood: The parameters and assumptions involved with the

distribution used must be easily understood by the expert providing the estimate.

b) Easily estimated: If the expert understands the nature of a parameter but

finds its estimation to be unnatural, the quality of the estimate will be degraded.
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¢) Easily calculated: It is helpful if such information such as percentiles are
easily calculated, letting an expert readily see the implications of choosing a |
particular parameter (corollary: this criteria suggests use of laptop computer and a
plotting program be used to show the expert exactly what he or she is thinking of).

d) Limits: The ability to specify upper and lower bounds should be
considered.

e) Particular Considerations: A priori assumptions, historical data,
compatibility with other projects, and such need to be taken into consideration as well.

Recommendations from current literature are clear. The triangular distribution is
the best compromise between simplicity, lack of knowledge, and ease of use by expert
opinion. When the state of knowledge about a random vériable does not even support the
estimation of a most likely value, the uniform distribution should be' used [Hershauer and
Nabielsky, 1972:19; Law and Kelton, 1982:158; Haimes, et. al., 1994].

The triangular distribution is generally recommended over the beta for several
practical reasons [Haimes, et. al., 1994; Williams, 1992; Biery, et. al., 1994]. Its simplicity
and ease of use in simulations are strong motivators, as is the fact that only three
parameters are necessary to completely define a triangular distribution while a beta
distribution requires four (three for the PERT approximation). It is also easily estimated
by experts. The beta, on the other hand, requires more information be known or assumed
about the random variable in order to set the shape parameters. Betas are hard to solicit

from experts, since these shape parameters are not intuitive satisfying. Experts unfamiliar
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with probability find betas more difficult to understand [Williams, 1992:268]. A further
disadvantage of the beta is that its use can artificially narrow the range of the random
variable’s distribution by implying a unjustified degree of precision. Smaller variances
tend to result than with a triangular distribution for the same expert [Biery, et. al.,
1994:71-2].

Where the imposition of a bound on one side of the distribution is unacceptable,
the gamma distribution can be used [Williams, 1992:269]. While it also uses a non-
intuitive shape parameter, the usefulness of the infinite tail may overcome this undesirable
trait.

Other distributions than the four described here can of course be used. The choice
should be made based on the characteristics of the random variable being estimated as well
as on the simplicity, ease of use, and explicitness of the distribution. Care should be taken
when employing normal and log-normal distributions, however. Systemic errors in
estimation invalidate the central limit theorem. The presence of these kinds of errors
makes the use of normal and log-normal distributions unjustified [Haimes, et. al., 1994].

2.3.5 Using Subjective Probability Estimates. Any information based on
subjective assessment of the probability of future events is susceptible to bias. Some
biases are obvious, while others are more subtle, difficult to perceive, and hard to deal
with. The technical expert providing the subjective assessment may have a vested interest
in the project in question, leading to some skepticism about the assessment’s objectivity

[Biery, et. al., 1994:64].
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2.3.5.1 Activity Duration Estimates. Projects are made up of tasks that
involve definite beginning and endings. They can be modeled through graphical displays
called networks which are composed of activities and events, where activities show action
or tasks to be accomplished and events show the completion or start of such activities.
The network models the precedence relationships that exist between the various activities
[Hershauer and Nabielsky, 1972:17].

Once the project network has been established, the next step is to estimate the
duration of activities. The precedence relationships between activities can be used to
determine the resulting duration of the whole project. Thus the estimates of the activity
durations is critically important both in estimating the actual schedule of a project and in
finding the expected “critical path,” the interconnected activities that determine the overall
project duration. If the activities on the critical path can be somehow shortened, the
overall project schedule can be shortened as well.

For our purposes of examining schedule risks of new technology, we have only a
few choices of ways to estimate these activity durations. If one feels certain about the
length of time a task will take, based on historical evidence or past durations of similar
activities, one can use a single point estimate to represent the necessary duration. This is
the technique used in the Critical Path Method. Depending on the availability of historical
data, probability distributions based on the frequency of past durations can be employed.
If less is known, subjectively assessed random variables must be used to represent the time

required for the task [Hershauer and Nabielsky, 1972:17-8].
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Mistaken "Learning" Hypothesis

Phases in R&D Timeline
research & concept engineering demonstration & implementation
exploration development validation
| |
idea generation proof of prototype and | use in the field
technology testing ‘

increasing time, decreasing uncertainty

-
Figure 2.12

One would intuitively expect that estimates of project-related variables like
schedule completion dates would get more accurate the closer one comes to the actual
completion of the project, as shown in Figure 2.12.

Unfortunately, this is not the case. King and Wilson found that the accuracy of
aerospace contractor estimates of the time remaining before contracted tasks were
completed remained poor from long before the task began throughout the actual progress
of the task. There was no improvement in accuracy until three weeks or less remained
before actual completion. Their empirical study found that the contractors they examined
underestimated the time required by about 30% before the project began and by about
21% during it. There were many more underestimates than overestimates in the historical
data they studied [King and Wilson, 1967:310-5]. Their conclusions have been supported

by later studies [King, et. al., 1967:84].
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This shows the intuitively pleasing “learning” hypothesis, that activity duration
estimates should improve as the activity progresses toward completion, may be invalid.
Project milestones can be estimated on a projected schedule, but in general such dates will
be underestimated.

2.3.5.2 Other Types of Estimates. While the previous section focused on

activity duration estimates, similar inaccuracies have been found with other estimates of
other uncertain quantities. Evidence gathered over the past two decades suggests that
experts regularly neglect the full range of probability distributions when they attempt to
estimate them. These subjective estimates provided by experts are subject to potential
biases, especially for extreme estimates. This can be attributed to the way people
assemble and process information to arrive at judgements. People reduce the complex
task of processing all available information to the use of a limited set of rules and
heuristics. Thisiprocess of reducing information aids in making judgements in a highly
complex world. This approach, however, tends to neglect information, especially
regarding highly unlikely events. These rare events are, by definition, within the tails of
distributions. For example, Hudak reports that cost estimates received by the Ballistic
Missile Defense Office (BMDO) often under-represent the most unlikely outcomes by
neglecting the tails of the cost distributions [Hudak, 1994:1026].

The potential for these kinds of errors in making subjective probability estimates

should always be addressed when preparing to solicit such estimates from expert opinion.
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2.3.5.3 Adjusting Estimates. Hudak describes a way to adjust for the under-
representation bias using triangular distributions. By assuming the expert’s estimated
bounds are actually interior percentile points (fractiles), one can “correct” the distribution
by applying a closed form equation to find the “true” bounds of the distribution that, with
the unchanged mode, will completely specify the distribution [1994]. His approach is
complicated and involves the solution of a four-degree polynomial (please see Appendix H
for his method). Keefer and Bodily describe a similar way to get the limits of a triangular
distribution, given the 10% and 90% fractiles together with the mode value, by solving
two equations simultaneously [Keefer and Bodily, 1983:599]. Let x5 and xys reflect the
5% and 95% fractiles, respectively. Using x,, x,, and x,, to represent the lower limit, upper

limit, and mode of the distribution, one can solve for any two points given the others by:

(x5 - xo)2 0.05 (x, - xy)(x, - x;)

2.5
(x, - x55)* = 0.05 (x, - x;)(x, - x,) (2.5)

2.3.6 Combining Estimates. Since identifying the best model or most accurate
expert is not possible a priori, considerable research has been focused on combining
forecasts. In general, combining estimates made by multiple experts or sources of
prediction seems to result in greater accuracy than just through relying on one single
expert opinion [Makridakis and Winkler, 1983:987]. This is true for aggregating
quantitative forecasts as well as more qualitative ones. The basic approach is to combine
the different estimates of the n experts into an overall estimate £ by assigning each

estimate x; a weight w;:
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£-Y wx, 2.6)

Where the weights sum to one (Zw; = 1). There are three basic approaches to choosing
these weights: simple averaging, Bayesian combinations, and statistical methods using the
correlation between errors.
2.3.6.1 Simple Averages. The use of simple averaging between multiple
estimates has proven relatively robust and more accurate than more elaborate schemes in
many applications. It is a very simple approach, that does not require information to be
known about the accuracy of the individual estimates or the correlations between their
errors. The theoretical justification for simple averaging is lacking, however [Gupta and
Wilson, 1987:356-7].
With simple averaging, equation 2.6 reduces to the following:
g- Ly o @.7)
n .1
A growing body of empirical research finds simple averages of expert opinion to
be quite effective, and that only a small number of experts must be included to achieve
most of the total improvement possible with a much larger set of experts [Ashton,

1986:405].

2.3.6.2 Bayesian Approaches. One problem with the simple average

approach is that we know different experts and forecasting methods have different
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accuracies for a given application. If we have some idea of what those differences are, it
makes sense to try and incorporate that information into the method used to combine the
different estimates. Bayesian approaches try to use as much of the information available
to the decision maker as possible in setting the weights of Equation 2.6 to improve overall
accuracy.

The subjective probability distribution provided by an expert is interpreted as the
outcome of an experiment. While the expert sees this estimate as an expression of his or
her state of information at the time of the estimate, the estimate itself is information or
advice for analyst or decision maker to incorporate into his or her own state of
knowledge. The problem of combining the estimates of several experts is then seen as an
inference problem where Bayes’ rule is applied to determine the posterior probability
estimate [Morris, 1977:680].

Some idea of the accuracies of the experts is involved with Bayesian combinations.
An expert must have his or her opinions calibrated, by comparing estimates to their true
value to reflect the assessment performance he or she has established in the past, or by
assessing the confidence of the analyst or decision maker in the judgement of the expert.
These calibrations are used to modify the combination of estimates in ways that depend on
the dependence between experts and the form of probability distributions being eétimated
[Morris, 1977:682-7].

In a sense, the expert’s quality is assessed first using the past performance of the

expert and then by the decision maker or analyst’s perception of his or her accuracy. The
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variance or range of the expert’s estimate probability distribution is used as a measure of
the expert’s confidence in his or her own precision — the tighter the distribution, the more
certain the expert. The basic concept of Bayesian combinations is that the analyst or
decision maker who is combining the estimates uses his or her subjective judgement about
the accuracy of the experts, together with preconceived “prior” personal assessment of the
estimate itself, to produce a combined estimate [Morris, 1977:693; Winkler, 1981:481].

Bayesian combinations are very sensitive to dependence between experts [Winkler,
1981:487]. Modeling anything but independence between experts seriously complicates
the joint calibration process [Morris, 1977:682]. Indeed, experts can be expected to
produce somewhat dependent estimates, if only from common training or experience, or
from working from the same data [Winkler, 1981:480].

Combining forecasts with weights determined from subjective probabilities of
accuracy, reflecting a decision maker’s confidence in the forecast, has some theoretical
problems while seeming intuitively satisfying. A forecast of the type we are hoping to
make is an inductive hypothesis on the true underlying stochastic process of the random
variable we are trying to predict, not a prediction of a specific realizable event. We are
really trying to divine the form of the random variable, and then make some statement
about the value we expect it to take on. The subjective “probability that the true value is
estimate i’ means nothing if the random variable is continuous or nearly so [Bunn,

1974:158-9].
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2.3.6.3 Other Statistical Approaches. Statistics are often used to attempt
to maximize the accuracy of the aggregated forecast by assigning weights which account
for the dependencies among the individual models or experts and their relative accuracies.
If one knew the covariances of the different estimates being combined, one could always
find a combined forecast with a smaller error variance than any individual forecast
[Newbold and Granger, 1974:135].

Unfortunately, we don’t know the values of the covariance matrix for the different
estimates in our case of technology forecasting. Instead, weights are often determined
from past performance of the experts in a variety of statistical ways [Newbold and
Granger, 1974:136].

One additional wrinkle in using statistical methods to weight experts’ estimates is
an approach documented by Hogarth in 1978 in his article “A Note on Aggregating
Human Opinions,” which tries to prescribe the number of experts to aggregate the
opinions of in order to maximize the accuracy of the aggregated estimate [quoted in
Ashton, 1986]. By using analogies to test theory, he developed an analytical model that
yields what he called “group validity” as a function of the number of experts, their mean
“individual validity,” and the mean intercorrelation between their judgements. The experts
are rank ordering alternatives. The “individual validity” he uses is just the correiaﬁon ,
b¢tween that expert’s estimate and the actual value being estimated. “Group validity” is
the correlation between the actual value and the simple average of the group of experts’

individual estimates. His model makes group validity an increasing function of the number
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of experts and their mean individual validity, and a decreasing function of the mean
intercorrelation between the experts’ estimates. This allows the ability to examine the
results of adding the (k + 1)™ expert to a set of k expert’s aggregated estimates, and shows
that the group validity of the new set of (k + 1) experts will not necessarily increase simply
be adding an expert whose individual validity is greater than the previous k expert’s group
validity. It may be necessary that the mean intercorrelation between the (k + 1) experts be
less than between the original £ experts. His model provides the necessary conditions for
the mean validity to improve with the addition of the (k + 1)zh ekpert, under certain
conditions. For a small group of experts to have near maximum group validity, of about
eight to twelve members, Hogarth argues that the mean intercorrelation must not be too
low (approximately > 0.3) and/or mean individual validity must not exceed mean
intercorrelation, with little statistical bias in the mean estimates. The limiting case, where
k = «, is the ratio of the average individual validity divided by the square root of the mean
intercorrelation between the experts’ judgements [Ashton, 1986:405-7].

Ashton presents the results of an experiment testing these concepts with quarterly
estimates of TIME magazine short-run advertising sales. He found that Hogarth’s
analytical model was effective in answering the “how many” and “which experts”
questions to get the most accurate estimates. Ashtén’s empirical results showed that
overall group validity did increase rapidly with additional experts added in, while the

variance of the validity decreased rapidly as well. Of course, one must know the actual
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value being estimated to use this technique, and it is only appropriate if the rank order of
the alternatives is important and not the actual level of the estimates [1986:412-4].

2.3.6.4 Summary of Combining Forecasts. While the data-based
approaches discussed above possess some desirable statistical properties, including low
variance in the final aggregated estimate, their empirical performance has been
disappointing. These approaches are often out-performed, in terms of accuracy, by the
simple averaging method [Gupta and Wilton, 1987:358]. Ashton quotes Einhorn et. al. as
saying standardized biases (bias - o) of experts had to be about 0.70 or more before simple
averages were outperformed by other realistic alternative weighting schemes [Ashton,
1986:407]. This unexpected result may be due to the large a priori data requirements for
these methods. In practical applications, this data is not usually available, and so past
history is often used to determine highly incorrect variance-covariances between the
different estimates, which leads to erroneous weights [Gupta and Wilton, 1987:358].

The Bayesian approaches to combining experts’ opinions require either past data
or a decision maker’s subjective assessment of expert accuracy to calibrate the opinions
and set the weights of Equation 3.6. These methods become very complicated when
dependence of experts are included and when the probability distributions being estimated
are not normal. The actual weights are very sensitive to the degree of dependencé
[Winkler, 1981:487]. |

Using an average of forecasts is undoubtedly better than using a “wrong” model or

expert. Therefore, unless an adequate theory exists to describe the forecasted technology
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characteristics or strong evidence indicates a particular method is better than all the others,
it is desirable to use multiple sources of forecasts and average their estimates [Makridakis
and Winkler, 1983:995]. In cases of expert opinion, where the underlying “models”

remain unknown, simple averages should be used [Kang, 1986:695].

2.4 Public Feelings About Technology Risk

One of the difficulties of environmental remediation is balancing the different
perceptions of the problems of both the public and the government. Often the cost
effectiveness, timeliness, and performance concerns that DOE considers are not the
primary issues that are critical to members of the local community, environmental
organizations, and other stakeholders.

The public whom the DOE deals with are often called “stakeholders,” a term that
the DOE defines as “individuals and groups in the public and private sectors who are
interested in and/or affected by the Department of Energy’s activities and decisions™
[DOE, 1995¢:20]. Stakeholders in environmental remediation cases generally identify
themselves, and may be part of the following groups: the Environmental Protection
Agency, the Department of Transportation, other federal agencies, Indian nations, state
and local governments, elected officials, environmental groups, industry and professional
organizations, organized labor, education groups, citizens’ groups, and local community
members [DOE, 1995¢:20].

The primary concerns of local stakeholders center on public, worker, and

environmental health [DOE, 1995¢:21]. While analysis of the risks that each of the
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candidate technologies pose to health and the environment are outside the bounds of this
study, some reflection of expected public reaction to the employment of these
technologies at DOE landfills is appropriate to provide to the decision makers of EM-50.
Other major concerns include: the magnitude and severity of the health risks involved with
the use of the technologies; how they affect the future use of the installations where the
landfill are sited; the cost-effectiveness of the clean-up; involvement of stakeholders in the
employment decision process; compliance with EPA and OSHA regulations, to include the
evaluation of health and environmental risks; and the impact of transportation and storage
of waste [DOE, 1995¢:21].

In many cases stakeholders do not trust the Department of Energy to deal with
their concerns. Criticisms of DOE health and environmental risk analyses characterize
them as narrowly framed, based on little substantive data and depending on many
assumptions. They do not address social or cultural values which are not amenable to
quantification, such as equity, peace of mind, aesthetic, economic, community, future, and
sentimental concerns [DOE, 1995¢:21-2].

The implications of using a certain technology option may trigger irrational
reactions in the public. The way people feel about the health and safety risks of many
technologies do not reflect a logical and reasonable understanding of the actual |
probabilities and consequences of potential problems [Wheeler, 1993:1-3].

The contrast between the federal government on one hand and the dissenting

stakeholders on the other is often seen as the conflict between “scientific rationality” and
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“cultural emotion” by the press and members of the public. Arguments tend to be reduced
to simplistic, dualistic terms. This springs in part from misunderstandings and suspicion of
“Science” by many members of affected communities and environmental interest groups,
but it is also created by the lack of trust in the government. This disposition towards an
“us vs. them” conflict is aggravated by the media’s tendency to dichotomize the news,
which simplifies the situation as a battle between opposing sides where one side has to
“win” [Coleman, 1995:74-5].

Managers evaluating the risks of new technologies must understand that some
stakeholders will view “risk” in a different light. Analysts and decision makers use value
judgements to assess the impacts of technological risks, but stakeholders may not agree
with these trade-offs. Their opposition to certain remediation options should be examined
when choosing the best technologies for use at landfills near their communities. Cultural
beliefs are an important social complement to addressing environmental problems
[Coleman, 1995:73-4], and dealing with stakeholder concerns is a necessary part of

practical remediation execution.
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II. Methodology

This chapter outlines the methods used to address the technical risk of innovative
remediation technologies being developed by the Department of Energy for stabilizing and
remediating landfill waste sites. Risk will be considered in both the inputs for the overall
decision support system and the ultimate recommendations presented to the decision
maker. This chapter will develop the methodology used to characterized technical risk in
the decision support system and describe the demonstration of the model for the sponsor
in DOE/EM-55. Ways to quantify and view the risks of recommended technology

portfolios will be demonstrated.

3.1 Landfill Stabilization Focus Area Technology Selection Project

In 1994, three graduate students in the Air Force Institute of Technology’s
Department of Operational Sciences began work to help the DOE with its decisions
concerning remediation technologies [White, et. al., 1995; Jackson, et. al., 1995]. Their
research focused on comparing the total life-cycle costs of the alternative technologies for
the Fernald Environmental Management Project near Cincinnati, Ohio. A spreadsheet-
based life-cycle cost (LCC) model was developed using historical data where available and
simulation results for a technology not yet fielded. They delivered a comparison between
vitrification (MAWS process), ex situ cementation, and dry removal processes based on

the requirements of each approach to remediate waste similar to that at the Fernald site
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[Jackson, et. al., 1995:2-3]. One area that the Fernald/MAWS study did not examine
explicitly was the issue of technical risk.

This research was extended in 1995, with an eventual plan to produce a decision
support system tool that would compare many innovative and proven remediation
technologies to be considered for use at various landfills using LCC and technical risk
criteria. This tool was meant to be used by the staff of the DOE Landfill Stabilization
Focus Area manager, Dr Jaffir Mohuidden, and so would examine the decision factors Dr
Mohuidden considered most important. A contractor, MSE Technology Applications
Inc., teamed with AFIT’s Operational Sciences department, is on contract to complete this

work as diagrammed in Figure 3.1. The effort includes two AFIT master’s theses together
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Figure 3.1
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with a generalization and refinement of the LCC model from the Fernald/MAWS study by
MSE employees.

The remediation technology decision support system includes “modules” for
technical risk, life-cycle cost, and decision analysis. The structure and flow of information
between the different modules is shown in Figure 3.1. The overall model will employ each
of these modules, although not at the same time. Each will take information, act on it, and
pass on a synthesis or judgement to the next. The penultimate synthesis is done in the
Decision Analysis Module, which will compare alternative technology strategies according
to criteria of cost and schedule, and will help the decision maker make better decisions
about innovative remediation technolégy management.

The heart of the decision support system is the simulation of the remediation effort
shown in Figure 1.2 as a network of sequential nodes that has a single path depending on
choices made about stabiliza;ion and between retrieval-treatment-disposal vs. containment
strategies. Each node represents the choice of one technology from a set of potential
candidates. Each technology choice has a certain distribution of time and cost associated
with it, drawn from expert judgement. State variables of the total time and cost are used

to evaluate the performance of combinations of technologies. Draws from the chosen

technologies’ time and cost distributions are made as one moves from characterization

through to monitoring. The sums of these technology costs and schedules make up the
state variables for each simulation repetition, creating an overall distribution of time and

cost over many repetitions for that specific combination or portfolio of technologies.
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These distributions are then evaluated with utility functions for cost and time, which are
combined in an additive multi-attribute utility function which is used to score the
performance of each portfolio.

3.1.1 Life-Cycle Cost Module. The LCC Module is an outgrowth of the 1995
thesis work that simulated several competing treatment technologies applied to the
Fernald site outside Cincinnati, Ohio. The 1995 models were very detailed, tailored for
the specific technologies being compared at the Fernald site [Jackson, et. al., 1995:56].
The simulation that will be part of this study’s overall model is less detailed but more
flexible, to allow the comparison of many different technologies in up to seven different
remediation processes. Less fidelity compared to the 1995 LCC modeling is the trade-off
being made for the capability to simulate the remediation of any DOE landfill.

The LCC Module will produce probability distributions of operating cost and
required processing time for each of the candidate technologies in each process in
Figure 1.2. It will use expert opinion to estimate performance variables and cost elements
as random variables, such as the cost per processing unit, the manpower required to
operate such machinery, and so on. These input variables will feed into the LCC
simulation from a database of technology information (see Figure 3.1). The simulation
will produce realistic probability distributions for each individual candidate technology that
account for correlations between real-world variables.

3.1.2 Decision Analysis Module. Once these probability distributions are

generated for the different technologies, the Decision Analysis Module, using multi-
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attribute utility theory, will develop the best combinations based on cost and schedule for
the landfill. Net present value is used to discount costs back to the present day. Each of
the processes from Figure 1.2 have technologies that are potential candidates for the best
combinations. The DA model evaluates the overall schedule and cost results from
employing these candidates in a total assembly of technologies called a “portfolio” or
“technology strategy.” Every potential combination of candidates is examined and its total
cost and time distributions estimated. This information would then be available to the
decision maker(s) when ultimate funding decisions are made.

Since the actual real-world decision to use a stabilization technique on a landfill is
not made until after the characterization and assessment process is complete, using
information about the waste stream that is currently unavailable, we cannot include it in
our modeling. Adding a stabilization step to any technology portfolio adds additional
costs and pushes the date of completion back. Since the DA model does not include
environmental risk concerns that might motivate the use of stabilization, the added cost
and time penalize the stabilization option so that it is never chosen. Because of this, the
decision maker must decide a priori if he or she is evaluating portfolios including or
excluding stabilization. Both cases could be run to see the effects of including it in the
remediation strategy.

The operational costs and schedules of these candidate technologies are themselves
random variables, with distributions resulting from thé LCC Module. Therefore the DA

model must account for the uncertainty in their performance.
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Both cost and time are important to the decision maker. Unfortunately, there may
not be a clear winning portfolio, with obviously better time and cost distributions. Multi-
attribute utility theory is used to develop utility functions that allow the aggregation and
trading off of cost and time in a way that reflects the decision maker’s preferences. These
preferences are used in the model to select the best portfolios. Interviews completed
before the overall model is run establish these utility functions, which carry with them
implied risk preferences as discussed in Chapter II. The relative importance of cost vs.
time is represented by weights multiplied by each individual attribute’s utility scores,
which are then added together to get an overall utility for the aggregated cost and time of
that portfolio. Absolute time and cost constraints are also used in the DA model to
represent the limits of anticipated operating budgets or regulatory agreement deadlines.
Instances of simulated remediations that have cost or schedule results beyond these
constraints are assigned a total utility of zero. This effectively penalizes portfolios for
sometimes exceeding these constraints, reducing the likelihood that it will be
recommended.

3.1.3 Technical Risk Characterization Framework. The technical risk
characterization framework consists of those processes that solicit and synthesize
information specifically to allow the overall model to account for the technical risks
involved with emerging, unproven technologies. As such, it consists of a set of
procedures and recommendations requiring analyst judgement and discretion that cannot

be completely automated.
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The recommended decision strategies from the Decision Analysis Module are
selected through picking those technologies that maximize the expected utility. The utility

functions in the module include an indirect treatment of risk as explained in Chapter II, as

they relate the decision maker’s value to different schedule and funding estimates for the

technologies. However, the explicit cost and schedule risks involved should also be

presented to the decision maker, as expected utility may not provide all of the available

and pertinent information.

The guidance received by the project team of AFIT/ENS and MSE emphasized

that certain risks must be addressed in the modeling effort. Table 3.1 describes the

specific major areas of concern.

Most of these risks lie in the “unknowable” section of Figure 1.2 at the point in

time when the decisions must be made. They consist of events whose realization lies in

Risks Assessed in Technical Risk Characterization Framework

risk in... method used by
development distribution of dates when technology LCC Module
schedule completes R&D
development costs uniform cost per year of R&D LCC Module
implementation probability that technology will work Decision Analysis
performance successfully in the field Module
compliance with question user if the technology meets the Technology
regulatory regulation requirements governing the Database (screening
requirements landfill in question criteria)
Table 3.1




the future, but which must be predicted today. This is no easy task and requires

technological forecasting methods to develop estimates.

3.2 Sources of Information

As already described in the introduction of this thesis, historical data is generally
unavailable for use in forecasting the schedule, cost, and performance characteristics of the
innovative remediation technology being examined in this study. As such, we are forced
to rely on subjective judgements from those with specific domain knowledge about the
technologies in question.

3.2.1 The Developers of the Technologies. Since the technologies in question are
still in development or have recently been deployed, the pool of expertise available to
produce detailed estimates of future capabilities, costs, and schedules is very small, and is
primarily restricted to the contractors developing the technologies. Because of the level of
detail required in the input performance variables and cost elements for the LCC Module,
in-depth experience, both with the novel technologies being assessed and their
development projects, is required to provide the necessary estimates. The luxury of
selecting experts through scoring methods such as the World Bank’s guidelines [Chicken,
1994:49-50] is not available to us because of the limited number of experienced people.
This situation is problematic, as the principle investigators of a project may not be the
objective, neutral judges one would prefer, nor are there other sources of information

which could act as a check for potential bias.
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The contractors developing these innovative technologies have a vested interest in
remaining competitive. They must be optimistic about their progress to justify their
continued work to their supervisors and DOE sponsors, as well as to motivate themselves
toward quality performance. For these reasons, one must consider the possibility of
unconscious biases influencing the estimates they provide for detailed schedule, cost, and
performance-related analyses that influence future procurement decisions. Other
conscious biases may exist as well, since they may well feel that future funding is
somehow at stake. For these reasons, alternative sources of information and independent
verification of technology developer estimates must be found when possible. Estimates
and forecasts are biased and should be treated accordingly.

3.2.2 Results from Similar Efforts. Studies attempting to characterize the future
capabilities and risks of remediation technologies have been published and can be drawn
on to build the database of input variables for the decision support system(in addition to
the technology developers). The Office of Technology Development produces summaries
of the technology development projects funded under the different focus areas. The FY-
95 Technology Catalog: Technology Development for Buried Waste Remediation and
the Land(fill Stabilization Focus Area Technology Summary provide overviews of the
candidate technologies under consideration in this study [DOE, 1995a; DOE, 1995b].
While little specific programmatic or performance information is provided in these
documents, the principle investigators and DOE contacts are listed. No characterization

of risk is described.
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Technical risks are described in a technical report completed for INEL on thermal
treatment technologies [Feizollahi and Quapp, 1995]. Performance details and specifics
are discussed. Unfortunately, these risks were only assessed qualitatively, using a low-
medium-high scale [see pages 5-1, 5-41-3]. Some technology information for treatment
techniques can be drawn from here.

A summary of remediation technologies was completed by a multi-organization
committee on environmental technology that provides performance estimates for many of
the candidates in this study [DoD, 1994]. The resolution of the operational cost and
schedule estimates is not very fine for most of the technologies described.

3.2.3 Combining Estimates. As discussed in Chapter II, combinations of
estimates from different forecasting methods and/or expert sources are often closer to the
ultimate outcome than a single estimator alone [Makridakis and Winkler, 1983:987;
Ashton, 1986:412].

For our problem of examining innovative technology, much of the information
required for the more complex methods of weighting estimates does not exist. In most
cases, we also do not have prior predictions from our experts that could be used to
determine past accuracies. Until such records are kept by the Technology Development
Office, the use of a simple average method is a reasonable choice for combining different
estimates. Where the information needed for the inputs of the decision support system is
provided by both the technology developers and published technology summaries such as

mentioned above, they should be averaged together. Considering its performance in
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comparison with many of the Bayesian and other statistical methods described in Chapter
11, simple averaging may be the best choice where historical data would allow alternative
weighting schemes [Makridakis and Winkler, 1983:987].

Averaging estimates from different people from the contractor may increase the
accuracy of these forecasts, but they share the same potential biases and so their estimates
could be highly correlated. This could actually lower the combined accuracy [Ashton,

1986:407].

3.3 Procedures for Assessing Risks Through Model Inputs

3.3.1 Risks Involved With Regulatory Compliance. The legal framework
governing DOE environmental management activities is extraordinarily complex. The
DOE must respond to the requirements of hundreds of permits, consent orders, and
compliance agreements throughout dozens of legal jurisdictions at national, state, local,
and tribal levels. Enforceable agreement milestones dictate the schedule of activities
required by a permit or agreement. The compliance agreements are based on statutes
which in turn evoke other statutes. These statutes are implemented through regulations,
which in most cases include specific guidance oni health and environmental risk [DOE,
1995¢:11; see DOE, 1995d:H-1-6 for a listing of major laws and regulations]. Additional
requirements may be levied by international standards such as ISO 14000 [Harmon, 1994].

The DOE has been negotiating agreements to address environmental violations at
most of its major facilities since the mid-80s. Interagency agreements with the EPA and

affected state governments have been reached for most of its sites on the National
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Priorities List. Of the 117 agreements signed since 1989, 41 have been completed or
renegotiated while 74 remain active [DOE, 1995¢:15].

The DOE’s remediation efforts are then driven by these legal agreements. A
timeline and remediation standards for a given site are established in Records of Decision
(ROD) that have the force of law [Mohuidden, 1995a]. Assessing the ability of the
technical approaches to meet the remediation time and performance deadlines will be
difficult to accomplish on a site-by-site basis. Unlike the other risk factors previously
discussed, these requirements are known ahead of time and candidate technologies must
be able to satisfy them (at least within the boundaries of our analyses). Therefore meeting
this criterion is an absolute requirement for a technology to be considered for a given site.

3.3.1.1 Procedure. The complexity of the regulatory requiremenfs makes
a general examination of them problematic. These regulatory issues are best explored on a
site-by-site basis because an examination of them in the aggregate is beyond the scope of
this decision support system [Deckro, et. al., 1995].

Since the decision maker who is using the decision support system to help with his
or her technology decisions will know which landfill is being considered, he or she is best
suited to judge which, if any, technologies do not meet the regulatory requirements that
cover that landfill. Therefore a simple series of screening questions prompting the model
user to exclude those technologies thét may not meet relevant regulatory requirements will
be asked at the beginning of the DA module session. These responses, in conjunction with

other site-specific characteristics, will reduce the set of potential candidate technologies
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examined in the LCC and DA modules. Indicator variables in the technology database will
be set that prevent excluded technologies from being considered for portfolios [Ralston,
1996].

3.3.2 Schedule Risks in Research and Development. The Department of Energy
is planning for the long-term remediation of its landfills and other waste sites in the United
States, but state and federal laws, in addition to other governmental agreements, place
certain time restrictions on its actions. The DOE faces competing pressures to wait for
lower cost remediation options to be developed and to begin clean-up operations
immediately. Longer R&D schedules impacts the availability of potentially less expensive,
faster, and safer remediation options in the field, and therefore the DOE would like to
minimize these availability delays as much as possible. One of the overall purposes of this
decision support system is to assist DOE technology managers in considering these trade-
offs.

The DOE faces the possibility that a selected innovative technology will not be
ready at its expected availability date. The planned use of such a delayed technology at a
waste site could cause that site remediation effort to fail to meet mandatory deadlines.
There is no guarantee that an ambitious technological approach will be successful — one
estimate of the likelihood of technical completion for commercial R&D projects is only
60% [Bhat, 1991:262]. Other, more costly methods may have to be employed when the
EM-30 or EM-40 manager becomes aware that a technology will not be available. In the

face of such an outcome, the credibility of DOE’s management of the nation’s remediation
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program would suffer. In terms of our risk definition in Chapter II, the negative
consequences of schedule overruns could be very grave. The probabilities of these
overruns must be estimated to have a complete picture of the risk involved.

3.3.2.1 Procedure. The availability of candidate technologies is estimated
using a probability distribution of dates when the technology completes R&D (see Figures
3.2-3.4). This “release date” is defined as when the given technology has satisfied all of its
specified laboratory and test performance criteria and is considered ready for use in the
field. “Successful development” is therefore considered to be the point when the
technology has met whatever test and demonstration standards that mark the final stage of
R&D. In this fashion a technology in the early “idea exploration” phases will have a range
of release dates that extends far into the future, while one that is very close to full
development will have a range that ends in the near term (note that this approach assumes

that, given sufficient (perhaps infinite) time and money, any technology will be successfully

developed).
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Figure 3.4

These “release dates” are estimated using a triangular probability distribution.
Triangular distributions are a better choice than other distributions, such as the beta, for
several practical reasons. They are easy for experts to estimate, requiring only three easily
understood parameters. They are simple to calculate and understand, and can take on a
variety of skewness shapes while being bounded by upper and lower limits (see Chapter II,
section 2.3.4.5). The triangular distribution is available as a feature in a number of
simulation codes. In the absence of other information that would allow the more precise
determination of the shape of the release date distributions, the conservative assumption
that the distribution is triangular will be used in this study [Biery, et. al., 1994:72]. The
experts are asked to provide estimates of the release date for their technology based on a
best, worst, and most likely case. This expert group of contractors developing the
technologies has the best understanding of the technological breakthroughs, available
resources, potential funding fluctuations, and other factors which influence the final
completion date. If other expert evaluators are available, they can supplement or replace

these contractor estimates. The resulting estimates, the earliest, most likely, and latest
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R&D release dates, are used to define a triangular distribution of potential completion
dates that the LCC model uses to establish an earliest possible implementation date.

3.3.2.2 Adjusting the Release Date Distributions. Examinations of the
literature demonstrate that contractors generally underestimate the actual time required to
accomplish tasks, and that such estimates remain inaccurate from before the task begins
until a few weeks prior to completion, regardless of the actual duration [King and Wilson,
1967]. The tails of subjective probability distributions for activity durations (i.e. very
short or very long) are also generally neglected [Hudak, 1994].

These potential errors and biases motivate the application of a correction to the
contractor estimates. A wholesale adjustment to the estimated release date distribution
should be done only if historical data exists that shows significant, consistent over- or
under-estimation of completion dates by that expert. Without such empirical data,
correction factors should not be applied to the mode date estimates. However, general
adjustments to the tails of the release date distributions is supported by the literature. The
Ballistic Missile Defense Office (BMDO) of the Department of Defense has been applying
corrections to such contractor estimated probability distributions as standard practice
[Hudak, 94]. Since predictions of the near future are generally more accurate than more
distant predictions, a smaller adjustment factor is used for the earliest release date than for
the latest release date. This conservative approach will help reduce the risks of seriously

underestimating the actual development time.
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The adjustment will follow a similar development as the bias-removal technique in
Hudak [94]. Hudak provides a method to convert between the absolute bounds of a given
triangular distribution and the inner fractiles using similar triangles that requires the
solution of a complicated fourth degree polynomial, as already described in Chapter IL.
He recommends using 10% and 90% fractiles for the contractor-supplied estimates, as is
done at BMDOQ. We will use 3% instead of 10% for the earliest release date, however, as
discussed above (see Figure 3.5). The contractors’ estimated earliest possible release date
will be taken to actually represent the 3% fractile of the release date distribution. The
estimate of the latest release date will be used as the 90% fractile. The new bounds are
pushed outward, extending the range of the distribution.

Keefer and Bodily mention a simpler procedure to convert between fractiles and
the bounds which will be used here [1983:599]. Extending their method to 3% and 90%
fractiles, we can find the new eariiest and latest release dates by solving the following

equations simultaneously:

(x5 - xo)2 = 0.03 (x, - x)(x, - x,)

(x, - xgo)2 = 0.10(x, - x)(x, - x,),

(3.1)

where x,; is the 3% fractile, x,, is the 90% fractile, x,, is the mode, and x, and x, are the
lower and upper limits of the adjusted distribution, respectively. The solution to these
equations involves a fourth degree polynomial, resulting in four potential solutions for x,
and x,. After excluding those infeasible pairs where one or both values fall inside the 3%

and 90% fractiles, the remaining pair is the new lower and upper limits, respectively.
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Solving the two simultaneous equations can be done using mathematical software such as
MathCad® or Mathematica®, or by using numerical solution algorithms that exist for all
major programming languages such as FORTRAN or C++ (see Numerical Recipes for an
example).

Figures 3.5 and 3.6 show an example of applying this method to the release date
distribution of one characterization and assessment technology, going from a triangular
distribution based on an earliest date of 1, a mode of 2, and a latest of 4 years from now to
one with an earliest date of 0.549, a mode of 2, and a latest of 6.330 years from now.

This approach is simpler than the one Hudak describes, which involves much more
complicated algebra (see Appendix H). Tests of Hudak’s method against the approach
just described show that they are equivalent.

3.3.3 Cost Risks in Research and Development. Total life-cycle cost is EM-50’s
dominant criteria for selecting remediation technology, subject to the constraints of public
safety and regulatory requirements [Mohuidden, 1995a]. The cost to develop a
technology is an important part of that total remediation price tag. The risks here are that
the actual development costs are larger than the DOE managers have predicted and
funded. Should a development cost overrun occur that exceeds the contingency fund
reserves in the EM budget, funding adjustments would disrupt the progress of other

development projects as funds are shifted between projects. Such reallocations can
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affect other projects’ development schedules and ultimate deployment. The troubled

technology’s R&D may be stretched out and delayed due to insufficient funds, similarly
affecting the final delivery date of the finished product. If the projected cost overrun is
sufficiently large, the technology development may be cancelled altogether.

Accurately predicting the final development cost, however, is not easy, especially if
long-term budget predictions from contractor proposals are not available. There are many
factors involved in R&D costing, including time-dependent costs such as work force
levels, capital costs such as laboratory equipment and prototype materials, organizational
overhead and other related expenses. The final development cost for a program can be a
function of what could be hundreds of individual random variables. However, the data
needed to construct such a detailed cost function are unknown during the early stages of a
project, and arguably are unknowable. While there surely are time-cost trade-offs that can
be made, determining the actual relationship between schedule acceleration-deceleration
and final cost is not empirically easy or theoretically certain [Biery, et. al., 1994:80].

The distribution of development cash flows over the R&D phase of a technology
development project could conceivably take many shapes. The actual costs for a given
year may be as dependent on programmatic factors outside the project, such as the
availability of funds, as any technology-specific cost of development. In a multi-year, high

visibility program like the DOE’s remediation research efforts, there is a high likelihood of
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budget fluctuations, both of less and more funding. The availability of funds is considered
an issue outside the bounds of this study.

Since the products under development for this study are emerging technologies
that extend the state-of-the-art in environmental remediation, there are further difficulties
in predicting the final development costs. The progress of the development effort relies on
innovative solutions to difficult engineering problems. The tirning‘of these technological
breakthroughs is impossible to anticipate, short of wizardry, as they are dependent on
individual creativity, organizational action, and luck. While it may be possible to model
the occurrence of these breakthroughs as some random process based on empirical
research in other fields, the soundness of such a model will be impossible to validate using
normally available (or rather unavailable) DOE technology development data.

3.3.3.1 Procedure. We know the development costs are strongly related
to the time required to complete R&D. Workforce and O&M costs are directly dependent
on the duration of R&D, while the costs of capital goods such as scientific equipment and
engineering materials are not (this assumes that capital goods purchasing schedules are not
materially affected by downstream delays over the length of the development program).
Following Biery, et. al., we will assume that, in the absence of more precise data, all costs
are linearly related to the actual time required to complete development [Biery, et. al.,
1994:80]. Using the projected remaining development costs and development schedule

gathered from the technology developers, a cost per unit time will be assigned to the
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project that will be used in conjunction with the release date distribution in the LCC model

to estimate the final remaining development cost. This cost is expressed as:

projected remaining R&D cost

development  cost per year =

(3.2)

median release date - present date '

This R&D cost per year will be stored in the Technology Database, where it will be used
by the LCC model to calculate the final development cost. One run of the LCC simulation

will yield: .

total development cost - triang [earliest , median , latest ]

x R&D cost per year . 3.3)

3.3.4 Performance Risks in Implementation. The transfer from successful
tevelopment to successful implementation is a step whose importance should not be
underestimated. Even if a technology has passed all of its developmental test and
evaluation (DT&E) requirements, there is still no guarantee that it will move satisfactorily
to the field. DT&E rarely duplicates real-world conditions. Often the situations where the
technology is put to use are different from those anticipated by the original technology
developers [Leonard-Barton, 1987]. To account for these possibilities, one may be able to
estimate the likelihood that a remediation technology is successful in the field after it was
successfully developed in R&D.

Most of the overall decision support model focuses on the implementation of the
remediation technology. The DA Module uses the R&D release dates and development

costs as starting points for the distribution of costs and schedule milestones resulting from
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the LCC simulation. Both the DA and the LCC modules assume that the technologies

perform within the bounds set by the performance variables established by expert opinion
— that is, the technologies will only act as well or as poorly as anticipated by the
technology developers. The possibility of a technology failing to meet the expected
performance criteria and requiring replacement by another technology to accomplish the
remediation of the landfill must be addressed. DOE technology selection studies have
used similar criteria [Feizollahi and Quapp, 1995:5-1].

The likelihood of implementation success depends on many factors; some are site
dependent, others are driven by the technology, and by their very nature are unknowable
until failure occurs. The question of a successful implementation must address the chance
that the preliminary site assessment was incorrect. A mis-assessed site could contain other
waste types and items which the chosen technology may not handle.

3.3.4.1 Procedure. This unknown implementation success will be
modeled through expert opinion. The probability of implementation success is defined as
the likelihood that the technology performs within expected parameters, with the
understanding that the preliminary characterization of the landfill may not be correct,
given that it was released from research and development. Let P(use) be the probability of

successful use:

P(use) = P (technology performs within expected parameters in
field use | technology was released from R&D and (3.4
preliminary site assessment may not be correct )
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By making P(use) conditional on the technology being first successfully developed,
we can consider the probabilities of successful development and successful implementation
as being independent. P(use) is the likelihood that the technology works as planned once
it has completed R&D. By accepting the assumption that the test and demonstration
standards which a “successfully developed” technology must meet remain essentially
unchanged through its multi-year R&D, we may assume that its P(use) is then independent
of either the time or cost required for development. This assumption of independence is
central to how we structure the overall model, as it allows us to consider development and
implementation separately.

Without specific knowledge of the covariance of the cost and schedule effects of
all the combinations of poss_ible technologies, this assumption is required to accomplish
any modeling at all. Again, the need for robustness is balanced against the decision
support model’s fidelity. Like democracy, this may be the worst choice for modeling a
spectrum of landfill remediation technologies — except for all the others.

Obviously the likelihood of using a tecﬁnology successfully at a site depends on the
waste being in a form that the technology is capable of processing. For example, a
treatment technology that cannot handle volatile organic compounds (VOCs) will not
work successfully on a waste stream that unexpectedly contains VOCs. Given the state of
uncertainty about the contents of DOE landfills across the country [Mohuidden, 1995a],
we cannot guarantee that a technology will always face the kinds of waste material that it

was designed to manage. Even with an acceptable characterization, a key hazardous
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element could be missed in a site until remediation commences. Therefore, we have used
expert judgement of the robustness of the remediation technologies, expressed through
P(use) estimates, as a method of dealing with this possibility.

The Decision Analysis Module will use this probability as the controlling factor as
to whether the technology works, adding its individual processing time and duration to the
overall master schedule and costs, or fails, requiring a replacement technique that incurs

additional cost and time to complete that remediation process.

3.4 Assessing Risks of Recommended Alternatives

There is one last crucial step in building risk assessment into the decision support
model, so that the results of the model reflect the technical risks involved. The decision
maker must have information on the relative riskiness of his or her decision alternatives
available when making choices. A quantitative measure of risk must incorporate both the
probability of undesired events and their consequences, and allow a decision maker to
unambiguously distinguish between different alternatives using risk as a criteria. There are
several ways to capture some estimate of risk for the decision maker described in Chapter
IT, including the mean and variance of the anticipated costs and scheduled milestone dates,
the Jia-Dyer “standard measure of risk,” and others. Since we have decided to express
risk through the tangible attributes of cost and time, we will compare decision alternatives
by comparing the estimated costs and schedules that result from the overall model.

3.4.1 Histograms. A convenient way to compare alternatives is to examine the

results from the DA Module expressed in the form of histograms. These represent the
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frequency of occurrence (probability distribution) of particular time and cost values for a
particular portfolio. The fraction of occurrences where total costs or required time are
intolerably high is obvious to the decision maker. All the information needed to express
risk (the magnitude of the cost or time and the probability of occurrence) is available from
the probability distribution functions (PDFs). However, such information is not presented
in a concise, compact way. Comparing many alternatives requires examining many
histograms. Alternative methods of expressing risk include ways of condensing the
histogram’s informaﬁon in other forms.
3.4.1.1 Getting Histograms From DPL®. The DA Module is based in a

DPL® model. After the model is run, the results are presented through a combination of
windows including a distribution window that displays the cumulative probability
distribution of the attribute selected in setting up the run (cost, time, or total utility).
Clicking on the “graph” menu in that window presents the option of viewing the
“cumulative” distribution (the default), a “frequency histogram,” or a “frequency X-Y”
graph (an alternative form of the frequency distribution). Selecting the frequency
histogram will result in a graph similar to Figure 3.7.

Obtaining the information contained in the histogram is accomplished by using the

options under the “file” menu. These save the histogram in a text file that can be imported
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into a spreadsheet with little difficulty. One can choose to “export as displayed,” which
creates a file allowing the reconstruction of the histogram graph, or to “export interval
midpoints” of the histogram bars for later analysis.

3.4.2 Classic Utility Theory. As mentioned in Chapter II, classic utility theory as
established by von Neumann and Morgenstern [1947] includes an indirect way to express
the decision maker’s preferences toward uncertain outcomes. The Decision Analysis
Module use;s utility functions to characterize the relative values of total cost and total time
required to remediate a landfill in selecting the best technology portfolios for the given
remediation task.

The shape of the utility function and the local risk aversion, - "(—(x)), can be
u(x
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examined to understand the decision maker’s preferences for risk. There is, however,
some difficulty in interpreting these indications of risk preference if the utility function is
complex.

3.4.2.1 Risk and the Utility of an Alternative. In our technology
management decision, we prefer less cost and shorter schedules to more cost or longer
schedules. Therefore we consider only decreasing utility functions. The utility function
u(x), assessed for the attribute x, expresses the decision maker’s value for different levels
of x. When x is the expected outcome of a risky decision, expressed through a reference
lottery, the shape of the utility function expresses the decision maker’s risk attitudes

[Keeney and Raiffa, 76:180].

Cost Utility Functions

risk-neutral vs. S-curve

utility

™

Figure 3.8
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Consider the utility curve for remediation costs used in the DA model in
Figure 3.8, shown compared to a risk neutral utility function. Examining the shape of this
S-curve suggests that it is risk averse from O to about $65M, and risk prone beyond
$65M. That is where the second derivative of the S-curve utility function changes sign,
and therefore where the local risk aversion function goes from positive to negative.

To examine the way risk can be measured through this utility function, consider
two different hypothetical alternatives, #1 and #2. The cost frequency distributions are
shown in Figures 3.9 and 3.10, respectively. Clearly alternative #2 exhibits more variance
than alternative #1. The mean cost of #1 is $65M while the mean cost of #2 is $51M.

We can apply the S-curve utility function from Figure 3.8 to these alternatives and

obtain the results shown in Table 3.2.

Histogram of Alternative #1 Histogram of Alternative #2
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frequency

.10 20 30 40 50 60 70 80 90 100
M

Figure 3.9 Figure 3.10
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Comparison of Two Example Cost Alternatives

Alternative #1 Alternative #2
Mean ($M) 65 51
Expected Utility 0.692 0.729
Certainty Equivalent ($M) 67.05 66.37
Risk Premium ($M) 2.05 15.37
Table 3.2

Alternative #2 has the higher utility and so would be ranked higher than #1. It has

the lower certainty equivalent (CE). If one looks at the difference between the CEs and

the means, the risk premium, one can see that #2 has a much higher risk premium. This

represents how much the decision maker would be willing to pay for another alternative

that would have no uncertainty involved with the remediation cost. The risk premium is

therefore an indirect measure of the risk associated with #2's cost distribution.

An equivalent way to look at these alternatives is to develop PDFs of the cost

utilities for these technology alternatives, resulting from the application of the utility

function to the cost PDFs. These utility PDFs are shown on Figures 3.11 and 3.12. The

means of these utility PDFs are 0.692 and 0.729, consistent with the expected utilities of

the cost distributions. The decreasing utility function of Figure 3.8 can be thought of as a

non-linear transformation of the cost PDFs, where the general shape of the cost PDF is

preserved but reversed. Because of the S-curve shape of the utility function, more weight

is preferentially given to the smaller costs than the larger ones. This “spreads out” the

shape of the original cost distributions.
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The difference in shape between the cost and utility PDFs is due to the utility
function, and therefore the shape difference shows the “riék preferences” of the decision
maker (assuming the utility function has been correctly asséssed and remained unchanged
through this assessment). Applying that utility function to the choice between alternative
#1 and alternative #2 results in #2 being selected.

But #2 is highly risky, as can be seen from Figures 3.10 and 3.12 or from the risk
premium of $15.37M. The chances of #2 costing more than $70M is 30%, much more
than the 10% of alternative #1. Indeed, one could end up with costs of $90M or even
$100M with #2, costs which are not possible with #1. This example shows that the utility
of an alternative’s PDF (if one accepts the utility function assessed from DOE technology
managers) may not accurately capture all the potential risk in an operational, rather than
theoretical, setting.

This can be illustrated by another example. If the cost PDF from alternative #1 is
shifted down by $20M, the resulting PDF is displayed in Figure 3.13. The shape of the
cost distribution is the same, implying the same level of uncertainty in remediation costs.
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The mean cost is $45M, as one would expect, but the expected utility of #3 is 0.966. The
associated CE is $48.62M, yielding a risk premium of $3.62M compared to $2.05M for
alternative #1. This would imply that the perceived risk increased, despite the fact that the
costs are lower! While it is clear that alternative #3 would be preferred to #1 and #2, the
way risk is indirectly measured in the utility function does not seem to clearly express our
definition of risk.

Histogram of Alternative #3 Further problems with risk

expressed through utility result from the

o
w
N

subjective nature of utility functions. A

frequency

o
N

utility function represents the values of

214 - -
one person — the decision maker whose

preferences were assessed through
Figure 3.13 procedures like those mentioned in
Chapter II. These preferences are captured at the time the utility function is assessed.
While one can attempt to generalize the utility function to other times and different
people, the only thing it unequivocally represents is the decision maker’s preferences at the
moment it was assessed.

For these reasons, utility functions alone are not the single best way to quantify

and compare risk as one moves from the theoretical to the operational. Objective

measures are needed that more directly measure what we define as technical risk.
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3.4.3 Mean and Range of an Attribute. One way to condense the objective
information contained in the histogram is to take the smallest, largest, and mean value
displayed on it. This expresses the most likely or expected value of the represented PDF
and shows the maximum variation about that expected value in both directions. While this
is valuable information for the decision maker, information regarding the likelihood of the
variations is left out. Values near the limits may occur with extremely low probability,
thus misleading the decision maker as to the complete risk involved.

The DPL® software presents the results of an analysis through histograms of
discrete cumulative probability distributions (CDFs) or probability distribution functions
(PDFs). This presents some difficulty in exémining a model’s results, since the potential
outcomes are represented in sets of intervals or bins. When simulation is used in DPLS,
the actual outcomes of the different replications are not available — only the histograms
are provided. Instead, each replication is approximated by the midpoint of its respective
histogram bin [Mykytka, 1996b].

In such a setting, the lower and upper bounds of the attribute’s range become
midpoints of the lowest and highest bins from the histogram. This may under-represent
the actual bounds by some small amount related to the number of bins used to form the
histogram. Thus, the limits of the range of the PDF are only approximations of the true
range of that attribute.

Calculations of the mean face similar difficulties. Let us say that » is the number of

replications made for a given technology portfolio, and 4 is the number of histogram bins
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or intervals chosen before running the DPL® model. Instead of summing up the
replications and dividing by n, a different approach is required. If x is the attribute we are

concerned about, the sample mean of this PDF of x is approximated by

h
F= Y am, xp, (3.4)
i=1

where  is the sample mean, xm; is the midpoint of the i* histogram bin, and p; is the
relative frequency of occurrence of the i* bin. This equation assumes that the width of the
histogram bins is equal throughout the PDF of the attribute x.

The high, low, and mean values can be easily found using a spreadsheet with
imported DPL® histogram files. Once the range and mean have been found for several
alternative technology portfolios, they can be compared on a single graph far more easily
than their parent histograms could be.

3.4.4 Variance and Expected Unfavorable Deviation. An alternative way to
describe the PDF of the attribute of interest is through its variance about the sample mean.
This also condenses information found in the histogram to a simpler form, but instead of
representing the complete range of the attribute, the variance or its square root, the
standard deviation, provides a sense of how the attribute is distributed without full
knowledge of its range. Both consequence and probability are accounted for in a fashion.

While the sample variance is typically defined as
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X (- %) (3.5)

n-1

§? -

where the actual i* replication is x; [Mendenhall, et. al., 1990:343], we know that we
cannot obtain the set of {x,} from DPL®. We therefore again adopt the midpoints of the

histograms. The sample variance, based on the histogram midpoints, is then estimated by
h
§2= Y (um, -x) xp, (3.6)
i=1

If written in a form equivalent to Equation 3.5 when the set of {x;} is known, this formula
uses a numerator of » instead of »n - 1 [Mykytka, 1996a]. This is easy to see if one
restricts the histogram bins to only one instance each. Then 4 = n and p; = 1/n. When we
are using the simulation option of DPL® instead of full enumeration because of the size of
the model involved, S? from Equation 3.6 is a biased estimator of the population variance

(which would otherwise result from the actual full enumeration of the entire model). To

correct for this, multiply the results of Equation 3.6 by . " .

There is a potential problem when using variance or the standard deviation to
represent risk, however. We are defining risk through the negative or unfavorable
consequences and their likelihoods, and the variance counts deviations from the mean both

in our favor and against. If the PDF is asymmetric, the variance may not be a good

measure of technical cost and schedule risk. Instead, a measure of variation that counts
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only the unfavorable departures from the mean should be used [Jia and Dyer, 1995:3;
Weber, et. al., 1990].

Such a measure is the expected unfavorable deviation, or EUD." It is similar to in
concept to Jia and Dyer’s “standard measure of risk” [1995:3], but is an objective measure

rather than based on a utility function. Itis defined as

" Ix, - x| x p, when x, - x is unfavorable
EUD - E 0 otherwise

=1

3.7)
=)

k {Ixmi - x| x p, when xm_ - x is unfavorable
i-1

0 otherwise .

This EUD is related to the semi-variance discussed in Chapter II, which is
calculated in a similar way as the sample variance of Equation 3.6 but includes only the
unfavorable variations. One can see that the semi-variance is almost the square of the
EUD, but each term differs by a factor of p; inside the summation.

Either will enable us to quantify the cost and schedule risks of the candidate
portfolios by providing a numerical measure of the risk. The shape, not the location, of
the attribute’s PDF determines the EUD or semi-variance. By correcting for the PDF's |

expected value, the resulting statistics are independent of the mean of the attribute. This

“Unfavorable deviation” rather than “negative deviation” is used here to avoid confusion.
In some cases, such as cost and schedule, it is the deviations above the mean that are of concern
(i.e. x; - X > 0) while in others, such as maximum speed or cargo capacity, it is the deviations
below the mean (i.e. x; - X <0).
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allows one to use both the mean and the EUD or semi-variance to compactly represent the
PDF of the attribute while preserving the information of most interest to decision makers.

The sample variance, semi-variance, and EUD can be calculated in a spreadsheet in
much the same fashion as the sample mean is, using the histogram of the attribute’s PDF.
Equation 3.6 will result in S? using the histogram bin midpoints, while Equation 3.7 will
generate the EUD. Note that the sample mean is required.

3.4.4.1 EUD Example. To illustrate the use of the expected unfavorable

deviation to quantify risk, let us examine the past examples of section 3.4.2.1. For this
illustration we will restrict ourselves to alternative #1, from Figure 3.9. The mean cost is
$65M, found using Equation 3.4. Since higher costs are undesired, the EUD is found to

be $3.5M using Equation 3.7:

4
Y Ix, - x| x p, when x, - x > 0
i-1
0+0+ (70 -65)x 0.4+ (8 -65)x 0.1
3.5.

EUD

i)

In a similar fashion, the EUD of #2 (Figure 3.10) is $7.25M and the EUD of #3
(Figure 3.13) is $3.5M. Clearly #2 is riskier than either #1 or #3, while #1 and #3 have
the same amount of cost risk. This agrees with the intuitive impression one gets from
looking at the PDFs.

3.4.4.2 EUD vs. Semi-variance. It is hard to choose between semi-
variance and EUD as measures of risk. In general, one may want to use semi-variance

when one’s expected audience or customer is knowledgeable about statistics and portfolio
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analysis, and therefore used to seeing variances and standard deviations. When one’s
audience or customer is not familiar with the concept of variance, EUD is easier to
explain, being a linear function of L, - x|, and in the same units as the attribute of interest.

Semi-variance and EUD will not necessarily produce the same results, however,
given the same data. While one might expect the two risk measures to be functionally
equivalent, ranking the same set of alternative in the same order, this may not occur. This
can be demonstrated by an example.

Let us examine two different alternatives, represented by discrete PDFs where
there are only two points above the mean for each (assuming that above the mean is
undesirable). In these cases, the EUD and semi-variance for the /® alternative are:

EUD | - (x) - X)'py + (%y - £)Py

: A (3.8)
SV, = (x - £)"py + (5 - )Py

where x; represents the i" point above the mean for the j* alternative, p; is the probability
of getting x;, and X; < x;; <X, The possibility of generating different risk rankings could
only occur if EUD, > EUD, when SV, < SV, (or vice versa). Since X;is a constant, let a;
=X, - X, and b, = x;, - X,. Then, looking at the case where EUD, > EUD, and SV, < SV,,
the possibility of different risk rankings can only occur if:

a;'py *+ a,p, > b'py, + b,y

2 2 2 2
ay'py + @y°P, < by'p, + bypy,

(3.9)

For this example, let p,, = p,, and p,, = p,,. Then Equation 3.9 becomes:
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lca1 +a,> kl;v1 +b2

3.10
kal+al < kbl b} (3.1
where £ - Pu f—z-’- Focusing our attention on b,, Equation 3.10 becomes
plZ p22 )
b,<ka +a,-kb
b2 bl s o - by (3.11)
2 a, +4a, - kbl
Since b, > 0 and assuming ka,* + a,” > kb?,
ka, +a, - kb <b, < lka] +a] - kb/
1 2 1 2 \/ 1 2 1 (3.12)

. kay +a,- kb, < |ka; + a] - kb]
Equation 3.12 implies that ranking differences for this case can occur if @, and/or b, is
sufficiently less than 1.

The condition represented by Equation 3.12 is possible — Figures 3.14 and 3.15
show a comparison between two two-point alternatives where x,, is allowed to change.
Here it varies between 0.8 and 0.82. As x,, increases, EUD, and SV, also increase. Since
X, and x,, are constant, the first alternative’s EUD and semi-variance are constant at 0.5
and 0.388, respectively. The intersections of the two EUD and semi-variance lines differ,
showing a region of between about 0.803 and 0.817 where EUD1 > EUD2 but SV1 <

SV2.
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EUD Comparison
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EUD1(x11,x12)
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0.385

0.38
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Figure 3.14

Semi-variance Comparison

0.8

0.805 0.81 0.815

X

Figure 3.15
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This potential for ranking differences has its cause in the squaring of the deviation
in the semi-variance formula. When x; - % for the i occurrence is less than one, the
contribution to EUD is more than that to the semi-variance. This is the opposite of what
happens when x; - ¥ is greater than one. This is a complication of some concern and is
further motivation to use the EUD rather than the semi-variance as a measurement of risk.
EUD remains a consistent measure across the range of x; - X, while the semi-variance may
behave differently dependent on what units are used.

3.4.5 Summary of Histogram Measures. To review the risk measures developed
from the output histograms, consider Figure 3.16 and Table 3.3. This cost histogram is

typical of the pilot study results, being highly asymmetric with some small frequency of

Example of Histogram Characteristics
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Figure 3.16
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extraordinarily high results. The term (mean + EUD) is shown for later reference with the
Chapter IV results. The variance and semi-variance are not displayed to preserve clarity.

Note how the 95% fractile point is far from the actual highest cost.

Summary of Histogram Features

feature what it measures
mean expected value of PDF
range spread of PDF
low spread below the mean
high spread above the mean
5% fractile spread below the mean
95% fractile spread above the mean
variance general deviation from mean
semi-variance downside risk
EUD downside risk
Table 3.3

3.5 Summary of Methodology

A review of the alternatives and decisions of the methodology described in Chapter
II shows how concepts from the literature and careful analysis of the DOE's remediation
technology problem are used in the decision support system. The combination of risk
assessment and technology forecasting can be broken down into dealing with model inputs
or outputs.

3.5.1 Model Inputs. Cost and schedule risks involved with research and

development efforts are modeled by soliciting expert opinion for subjective probability
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Risk: Time to Complete Development
Method: Release Date Distribution

Expert Opinion
on Candidate Technologies
from Tech. Developers

Triangular Release Date
Distribution (3 point approx.
using upper & lower limits +
median date)

Technology
Database
Ask for most likely, earliest, & latest estimates as limits of
triangular distribution, then modify lower and upper limits
using extension of Keefer & Bodily
-- assume eatliest is 3% and latest is 90% fractile. Y
LCC Model

Figure 3.17
distributions of the dates the technologies are released from R&D. These release date
distributions take the form of triangular distributions, using three parameters of earliest,
most likely, and latest possible time from the present to be fully specified. Because of
concerns about under-representing the extremes of these distribution, the tails are
extended by assuming the expert's estimates of the earliest and latest dates are actually the
3% and 90% fractiles and adjusting the distributions accordingly. The total R&D costs
are then estimated by multiplying this release date distribution by a constant annual cost

drawn from current project projections (see Figures 3.17 and 3.18 for process action
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Risk: Cost to Complete Development
Method: Cost as a Function of Release Date

Expert Opinion
on Candidate Technologies
from Tech. Developers

Constant Cost / Unit of
Development Time

Technology
Database
Justification: '
Practically difficult to sufficiently predict combination of
funding fluctuations, course of development, & future
spend plans to allow description of budget envelope %
LCC Model

Figure 3.18
diagrams? graphically depicting what is being done).

The performance of technologies in the field is represented by random variables
drawn from expert opinion and used in the LCC Module. The possibility of the
technology completely failing in the field is accounted for by expert judgement of the
probability that the technology fails to perform as expected, given that the preliminary
landfill characterization may not necessarily correct and that the technology successfully

completed R&D (see Figure 3.19).

The open box “Technology Database” refers to the data store used to hold technology
information (see Figure 3.1) using the process action diagram notation in Shina, 1991 [14-16].
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Risk: Chance that Tech. Fails In the Field
Method: Expert Estimates of P(use) per Technology

Expert Opinion
on Candidate Technologies
from Tech. Developers
(P(use) for mixed low-level
waste, realistic conditions)

Estimated P(use) Given That
Preliminary Site Characterization
is Sufficiently Accurate That

Waste Types and Items Can Be
Dealt With '
Technology
Database
Vi
DA Model

Figure 3.19

The performance of technologies in the field is represented by random variables
drawn from expert opinion and used in the LCC Module. The possibility of the
technology completely féiling in the field is accounted for by expert judgement of the
probability that the technology fails to perform as expected, given that the preliminary
landfill characterization is not necessarily correct and that the technology successfully
completed R&D (see Figure 3.19).

The risk that a given technology cannot meet regulatory requirements governing
the remediation of that specific waste site is too complex and site specific to be modeled in
the decision support system. Instead the user of the model is asked to make this

judgement based on his or her greater understanding of the specific site being examined.
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3.5.2 Model Outputs. The technologies are employed in complete portfolios to
conduct the entire remediation of a landfill in the Decision Analysis Module, using
information about the R&D and operational schedule and costs drawn from expert opinion
and the LCC Module. The DA model creates output distributions of total cost and time
for each portfolio using simulation, and recommends the best portfolios based on a multi-
attribute utility function for cost and schedule.

These resulting distributions can be examined to find expressions of the risks of
these alternatives. The range and mean provide one way to present the information
contained in the output probability distributions. While the utility scores of the
alternatives implicitly include risk, a more operational measure of risk is desired. This is
provided by the semi-variance or expected unfavorable deviation (EUD), which
numerically expresses the risks of cost and schedule overruns so that portfolios can be

quantitatively compared.
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IV. Results

This chapter will describe the results of applying some of the concepts and
methods previously developed. The prototype Decision Analysis Module was used with
incomplete technology information gathered from the technology developers,
supplemented with notional data, to demonstrate its features and test the concept. The
input data and the resulting portfolio schedule and time distributions were examined using
the procedures from Chapter IIl. This provides examples to guide later use of the overall
decision support model and demonstrates ways to see the cost, schedule, and performance

risks of recommended technology decisions.

4.1 Preliminary Technology Information

A complete prototype for the overall decision support system is scheduled for
completion by the summer of 1996. Information is being gathered by MSE on two to
three different technologies for each remediation process to demonstrate the prototype to
DOE/EM-55 in October 1996. Interviews with the principle investigators of each
technology development project by MSE personnel were originally planned for the fall of
1995, however faxed questionnaires were used instead (the interview script is attached in
Appendix D). The gathering of this information, a responsibility of MSE, has not been
completed at this point (March 96). However, some initial survey results supplemented
with the expert opinion of MSE personnel were used to pilot test the Technical Risk and

the Decision Analysis Modules. The data should be treated as notional and used for proof

4-1




of concept only. The preliminary technology data relevant to the Technical Risk
Module is attached (see Appendix A).

4.1.1 Adjusting R&D Release Date Distributions. The preliminary release dates
were solicited from the principle investigators and MSE by requesting estimates of the
earliest, most likely, and latest possible dates, measured in years from the present. As
described in Chapter II, these release dates are expected to be conservative, resulting in a
triangular distribution that has unrealistically small tails. The procedure described in

Chapter III was used to adjust the range of the distributions to include more of the low

Comparison of VETEM R&D Release Dates
PDFs, straight vs. adjusted endpoints

0.7
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Comparison of VETEM R&D Release Dates

CDFs, straight vs. adjusted endpoints
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probability possibilities. A simple MathCad® 5.0+ file was used to solve the simultaneous

equations, with the “SmartMath” option enabled (attached in Appendix E). This results of

Figure 4.2

this procedure are shown in Figures 4.1 and 4.2 for the second characterization

technology, VETEM. The adjusted release date limits for all technologies are included in

Appendix B.

The greatest increase is, of course, in the latter part of the distributions, since we
are assuming that the expert-provided latest date is actually the 90% fractile (recall that
the expert's earliest date estimate is assumed to be the 3% fractile). The feasible solution
to Equation 3.1 moves the earliest and latest dates from 1 and 4 years to 0.549 and 5.330

years, respectively. The total range of the release date distribution increases from 3 to
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4.781 years, an increase of almost 60%. While this may seem like a large increase,
because the likelihood of these dates occurring is small, the mean date changed very little
— going from 2.333 to only 2.626 years. The variance, however, increased from 0.389 to
1.001, due to the spreading of the distribution.

Similar results were found when adjusting the other release date distributions in the
preliminary technology database. Means increased by an average of only 9% after this
procedure was used, while the variance increased by an average of 141%. These increases
in variance underscore the need for accurate estimates.

4.1.2 Estimates of Annual R&D Costs. Based on the preliminary information
gathered or generated by MSE, the total remaining development costs for the set of
technologies being examined were estimated and are given in Appendix A. These figures,
divided by the mean from the adjusted release date distribution, provide an estimate of the
annual R&D cost for that development project. This will be used in the LCC simulations
to determine the simulated R&D cost for a given draw from the release date distribution
and are also listed in Appendix B.

The annual R&D cost estimates are lower when using the adjusted release date
distributions instead of the release dates of MSE, because the mean release dates
increased. The total R&D costs remain the same as shown in Appendix A.

4.1.3 Estimates of the Probability of Successful Field Use. The probability of
successful use in the field, P(use), was estimated by MSE for all the technologies included

in the future prototype demonstration. Since the landfill being considered holds mixed
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low-level waste [Nickelson, 1996], P(use) was defined as the probability that the
technology would work as expected at a mixed waste landfill given the normal uncertainty
in preliminary characterization and assessment of the site.

The accuracy of these point estimates is uncertain. Without actual performance
data or information on the past accuracies of preliminary assessment efforts, anything
other than subjective opinion about the future pérformance of these technologies is
difficult to find. The sensitivity of portfolio selection to changes in P(use) will be
examined in this pilot study and is strongly recommended for any future use of the overall
decision support system. These estimates, while notional, are adequate for this

demonstration.

4.2 Examination of Preliminary Results

Because the LCC Module is not yet complete, simulations of the operating cost
and schedule distributions were not available. To allow the exercise of the Decision
Analysis Module, MSE personnel provided assessments of the cost and schedule
distributions for each candidate technology. Appendix A shows these notional estimates.
Ralston [1996] provides a complete description of this module.

A landfill at INEL in Idaho Falls, ID, was selected as the landfill requiring
remediation. This landfill, Pit 9, was operated as a waste disposal pit from November
1967 to June 1969. One acre (43560 sq. ft.) was excavated to the basalt bedrock before

being filled with approximately 150,000 cubic feet of packaged waste and 350,000 cu. ft.
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of soil, then covered by 250,000 cu. ft. of overburden. This leaves 500,000 cu. ft. of
mixed low-level waste to be remediated [Nickelson, 1996].

The DA model was run for two cases: 1) stabilization technologies were used in
the remediation effort and 2) with the second characterization and the second monitoring
technologies selected a priori, with stabilization excluded as an option. Because the
decision to use stabilization is based on the results of the characterization and assessment
process and judgement of the waste’s stability and migration potential, we did not include
the stabilization decision directly in the DA model. Instead, both stabilized and
unstabilized strategies should be examined. For the unstabilized case, VETEM was
arbitrarily picked as the characterization technology used from which the decision not to
stabilize was made. The use of on-site monitoring was chosen because its cost and
schedule distributions clearly dominated the Yucca Mt. option for the notional data
employed in this study.

Two different pairs of cost énd schedule utility functions are then required, one for
the stabilized strategy and one for the non-stabilized strategy. These utility functions are
shown in Figures 4.3-4.6. The two utility functions are combined via additive multi-

attribute utility functions of the form:
u,,(cost, time) = k u_(cost) + (1 - k) u, (time ). 4.1)

where k = .667 in both cases. These utility functions were assessed from interviews with
technology managers working at the Landfill Focus Area Field Office at the Savannah

River Site in South Carolina. They reflect the simple, but operational concept that the
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Utility Function for Total Cost
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Figure 4.3

Figure 4.4

Utility Function for Total Cost
stabilized strategies
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Utility Function for Completion Date
stabilized strategies
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Figure 4.5

Figure 4.6

soonest completion date is preferred (see Appendix F for the actual equations).

After the stabilization decision is made, the decision paths break down into the

ones shown on Figures 4.7 and 4.8. The upper paths correspond to cases where

stabilization is used. The decision to pursue a containment vs. retrieval-treatment-disposal

strategy is left open. Likewise, the bottom paths reflect the choice to not stabilize. A

technology must be selected for each process in the chosen path. Because of the size of
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the model, it appeared prohibitive to completely enumerate all possible combinations of

nodes in the DA model’s decision tree. DPL®‘s simulation option was used therefore with

ten thousand iterations in each run instead of complete enumeration. Ten thousand

iterations were felt to be sufficient to get accurate sample statistics.

The preliminary results found the best five strategies (as determined through total

process, are listed in Table 4.1 using the ID codes found in Figure 4.7.

 utility) for the two above cases. The technologies for these portfolios, one for each

The processes in Figure 4.7 are not employed in a strictly sequential fashion.

Some processes, specifically treatment, disposal, and monitoring, can begin while their

predecessors are still underway if allowed by their R&D release dates. While in general
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each technology is employed independently in the DA model, interactions between certain
technologies from different processes are modeled, where one cannot be used with

another or two technologies must be used together. Ralston discusses these factors in

more detail [1996].

4.2.1 Cost, Time, and Utility Histograms. Examination of the total cost,
schedule, and utility histograms resulting from the DPL® runs demonstrates the various
risk measures described in Chapter III.  Figure 4.9 shows a typical cost distribution, that
of the #3 portfolio without stabilization from Table 4.1, while Figure 4.11 shows its time

distribution and Figure 4.13 shows its utility distribution.
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Both undesired consequences (higher costs, longer completion schedules, and
lower utilities) and the probabilities of these events occurring are captured on these charts.
Another way to view this information is through the cumulative distribution

Best Technology Portfolios Recommended By DA Module
When Stabilization Is Not Used

#1 ch2, contl, m2
#2 ch2,rl, tl,d2, m2
#3 ch2, 2, t1,d2, m2
#4 ch2, cont3, m2
#5 ch2, rl, t3,d2, m2

When Stabilization Is Used

#1 chl, sl, cl, m2

#2 ch2,sl,cl, m2

#3 ch3, sl,cl, ml

#4 ch2, sl, ¢3, m2

#5 ch3, s1, c3, m2
Table 4.1

functions, where the frequencies of occurrences are added together instead of plotted
separately. This makes finding points such as the 5% and 95% limits easier. Figures 4.10,
4.12, and 4.14 show the cumulative distributions for the cost, schedule, and utility

distributions in Figures 4.9, 4.11, and 4.13, respectively.
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Time Frequency Histogram
#3 portfolio, w/o stab.
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42.1.1 DPL® Histogram Bins. A careful review of Figure 4.9 will
disclose an anomaly with this DPL® output. The widths of the histogram bars do not
remain the same throughout the graph. This seems to be true for every result from the DA
model that has bars of some width. While the reasons for this irregularity are unknown at
this time (March 96), with the large sample size used in this study it does not seem to have
a great effect on the results. See Appendix G for a discussion of this irregularity.

4.2.2 Range Graphs. Using the sample mean formula in Equation 3.4 and the
largest and smallest histogram midpoints from the DPL® runs for the top portfolios listed
in Table 4.1, we can plot the ranges of cost, time, and total utility for the cases with and
without stabilization. From these plots we can understand the relative ranking of the
technologies with respect to average cost and completion time and also see a measure of
the risk of each portfolio. Figures 4.15-4.20 show these plots for the preliminary results.

As one can see from Figure 4.15, there is a dramatic difference in terms of range
between the portfolios following removal-treatment-disposal strategies (#2, #3, and #5)
and those that use containment (#1 and #4). From Figure 4.16, we can tell that the ranges
of required time for completion are roughly the same for all five portfolios and that the
means are what distinguish between them. Finally, the plot of utilities in Figure 4.17
shows the surprising low of zero utility for portfolios #4 and #5. This means that in at
least one instance, the simulation of these portfolios resulted in breaking one of the cost or

schedule constraints of the DA model and therefore being assigned zero value. A
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Ranges of Total Utility
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review of Figure 4.16 indicates that it was the schedule constraint of 10 years.

The portfolios following a stabilize-first strategy show fairly consistent ranges of
cost, although the mean costs vary from $40M to $50M. A cursory examination of
Figure 4.18 should cause one to wonder why portfolio #1 was ranked first by the DA
model. Figure 4.19 identifies the reason — portfolio #1 has a dramatically shorter
expected schedule. Since the ranges overlap, we know that there is no deterministic
dominance involved. We would have to compare the original CDFs to determine the
existence of stochastic dominance. This illustrates the trade-offs between the importance
of cost and schedule implied by the constant k in the additive utility function of Equation

4.1 (page 4-6). We can also see the upper limit of completion time for #4 and #5 violates
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Ranges of Total Utility
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the 10 year constraint, resulting in a lower utility of zero for this set of runs as with the
non-stabilized portfolios. Figure 4.20 could also make one wonder why portfolio #1 was
ranked before #2, since #2's range of total utility is tighter than #1's. A check of the data
in Appendix C shows that the difference in mean utilities is less than 0.0005 (#1: 0.99184,
#2: 0.99180), indicating and highlighting that the tradeoff between cost and time for these
portfolios is very close. Other factors, such as risk or political considerations, may then
come into play to distinguish between the portfolios.

| 4.2.3 Expected Unfavorable Deviations. Similar graphs can be developed using
the sample means and EUDs. While these do not represent the complete ranges of the

cost and schedule results, they are a better representation of risk since probability is
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incorporated in the definition of EUD (Equation 3.7). Figures 4.21-4.36 show the EUD
graphs for the top portfolios. The actual numerical results are shown on Table 4.2.

Looking for risk with respect to utility may not be as meaningful to a decision
maker as reviewing risks in tangible attributes of cost and schedule. Using the variance or
EUD of a utility distribution also mixes two different types of risk definitions, that of
classic utility theory and the “mean-variance” definition. Since the shape of the utility
function determines, in part, the distribution of utility around the expected value for a
portfolio, taking a measure of the variation around the mean “counts” the variation twice.
Despite these theoretical cautions, however, this information is valuable to a decision
maker trying to weigh the risks in a practical situation.

Figure 4.21 shows that the EUD measure is consistent with the ranges of cost for
the non-stabilized portfolios. Portfolios #1 and #4 have very little expected variation from
the mean values of $6.56M and $18.94M, respectively, while the retrieval-treatment-
disposal portfolios (#2, #3, and #5) exhibit a great deal more cost risk. From Figure 4.22
we can see that all five portfolios have roughly equivalent schedule risks. The large cost
EUDs imply that there is a great deal of uncertainty or variability in the preliminary cost
estimates of retrieval, treatment, and disposal technologies. The utility means on Figure
4.23 decrease going from #1 to #5 (since that is what was used to rank order the

portfolios), and the EUDs increase.
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Comparison of Technical Schedule Risks
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Turning our attention to the portfolios employing stabilization, the risks seem to be
relatively constant for all five. Choosing between portfolio #1 (means of $43.37M and
1.68 years) and #2 ($39.11M and 4.01 years) hinges on the decision maker’s trade-off
between cost and completion time — if a lower cost is favored more than a shorter
remediation schedule, #2 would be the best choice, while #1 is preferred if the counter is
true. This is multi-attribute utility theory’s greatest contribution. It quantifies the decision
maker’s preferences for trading off the important decision factors. Figure 4.26 shows how
close the total utility scores (means) are with the current weights. Notice that #2 actually
has an EUD slightly less than the #1, the only case of utility EUD being smaller for a
lower ranked alternative in this example data set. This EUD is dependent on the relative
weighting between cost and schedule, as well, making interpretation difficult. But with
the current weights, this lower EUD may make #2 more attractive to a decision maker
than the slightly higher utility score of #1.

These graphs (Figures 4.9-4.26) summarize the cost and schedule risks in a concise
and clear fashion. Both parts of risk — unfavorable consequence and probability — are
represented by the length of the expected deviation line extending above the mean value.
These cost and time expected unfavorable deviations are independent from the value
assessed by utility functions and so represent additional decision-making criteria that can
be used as needed to distinguish between alternatives. The EUDs of the utilities provide a
sense of the utility PDFs of these alternatives, providing more information than just the

expected utilities alone.
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Means and EUDs For the Top Ten Portfolios

Cost Time Total Utility
portfolio mean EUD mean EUD mean EUD
(M) (M) (years) (years) (utility) (utility)
without stabilization
#1 6.56 0.76 3.73 0.35 0.99379 | 0.00286
#2 16.98 533 3.14 0.43 0.98926 | 0.00657
#3 18.94 5.58 3.29 0.44 0.98615 | 0.00826
#4 17.01 0.4 5.42 0.37 0.96184 | 0.01705
#5 10.07 2.55 5.29 0.36 0.95822 | 0.02257
with stabilization
#1 43.37 2.4 1.68 0.27 0.99184 | 0.00277
#2 39.11 2.23 4.01 0.35 0.9918 0.00243
#3 39.08 2.08 5.02 0.35 0.98589 | 0.00447
#4 49.6 2.03 5.43 0.37 0.96986 | 0.00951
#5 49.81 1.89 5.48 0.37 0.96935 | 0.00914
Table 4.2

4.2.4 Semi-variances and Coefficients of Variation. Table 4.3 shows the

variances and semi-variances of the top ten alternatives.

Figures 4.27-4.32 show the variances and semi-variances compared against the

EUDs as measures of risk. The heights of the bars reflect the magnitude of that risk

measure for that alternative, and so the rankings of each alternative by risk measure can
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Variances and Semi-variances For the Top Ten Portfolios

Cost Time Total Utility
portfolio || variance semi- variance semi- variance semi-
($MA2) variance || (years”2) | variance | (utility’2) | variance
(M) (years"2) (utility*2)
without stabilization

#1 3.9106 2.3646 0.8205 0.4835 0.00014 | 0.00013

#2 197.63 162.23 1.4171 1.0087 0.00055 0.0006
#3 205.63 164.95 1.4322 1.0103 0.00105 | 0.00096
#4 1.4657 0.7294 0.9139 0.5685 0.00353 | 0.00031

#5 82.688 75.311 1.1885 0.7838 0.00674 0.0061

with stabilization
#1 47.873 31.599 0.47119 | 0.32545 | 0.00016 | 0.00014
#2 39.806 26.148 0.85586 | 0.50475 | 0.00007 | 0.00006
#3 35.0806 23.062 0.8802 0.51947 || 0.00021 | 0.00024
#4 37.215 24.835 091076 | 0.56713 | 0.00236 | 0.00221
#5 33.281 22.096 0.90917 | 0.56642 | 0.00217 | 0.00202
Table 4.3

be determined. Since EUD is in different units than the variance and semi-variance, it is

plotted against the left axis instead of the right. Of particular interest are those cases

where the rankings would be different based on variance and semi-variance, and EUD and

semi-variance. Again, care should be taken when interpreting the risk measures of the

utility scores.
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Comparing Util. EUD, Var., & Semi-Var.
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Figure 4.28 shows one situation where using semi-variance would result in a
different ranking by risk than using EUD. Here, looking at the schedule risk measures for
the non-stabilized portfolios, the three least risky portfolios are (in order of decreasing
risk) #4-#5-#1 for EUD and #5-#4-#1 for semi-variance (and variance, as well). Another
examples of different rank ordering can be seen on Figure 4.30, where the cost risk
measures for the stabilized portfolios result in swapped third and fourth most risky
positions: EUD results in #3-#4 while semi-variance and variance result in #4-#3. This
confirms the discussion in section 3.4.4.2 in Chapter IIL

The coefficient of variation, the standard deviation divided by the mean, is
suggested by finance references as a measure of relative risk [VanHorne, 1971:46]. The

coefficient of variations of the ten portfolios are shown in Table 4.4 and Figures 4.24-25.

Coefficients of Variation

portfolio #1 #2 #3 #4 #5
non-stabilized

cost 0.3013 0.8277 0.7577 0.0712 0.9027

time 0.2426 0.3797 0.364 0.1764 0.2062

utility 0.012 0.0236 0.0329 0.0618 0.0857
stabilized

cost 0.1595 0.1613 0.1516 0.123 0.1158

time 0.4084 0.2305 0.1868 0.1759 0.1741

utility 0.0125 0.0086 0.0158 0.0501 0.048
Table 4.4
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Normalized EUDs

portfolio #1 #2 #3 #4 #5
non-stabilized
cost 0.1161 0.3141 0.2945 0.0237 0.2535
time 0.0925 0.1373 0.1343 0.0686 0.0673
utility 0.002877 0.006645 0.008373 0.017726 0.023559
stabilized
cost 0.0552 0.0571 0.0531 0.0409 0.0379
time 0.1593 0.0872 0.0705 0.0686 0.0682
utility 0.002793 0.002453 0.004537 0.009801 0.009429
Table 4.5

Since the coefficient of variation is based on the variance, which is not an accurate

measure of the unfavorable variation alone, they are not good measures of risk according

to our definition. However, the EUDs can be normalized by the means as well to form a

relative measure of risk as well. These EUDs divided by the means are shown in Table

4.5. Figures 4.35-4.40 display these "normalized” EUDs compared with the coefficient of

variations in order to contrast risk rankings resulting from the relative heights of the bars.
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Comparing Util. CV & Normalized EUD
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Comparing Time CV & Normalized EUD
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The two relative risk measure produce different rankings for the unstabilized
portfolios, where the coefficient of variation yields a #5-#2-#3-#1-#4 order for cost and a
#2-#3-#1-#5-#4 for time but the normalized EUD vyields #2-#3-#5-#1-#4 and #2-#3-#1-
#4-#5. The most interesting thing is the difference in risk ranking between the standard
EUD and the normalized EUD, as summarized in Table 4.6.

The cost rankings are little different from the standard and the normalized EUDs.
Only the stabilized #3 and #2 swapped places, and they have scores that are close together
in both measures. The time rankings, however, show surprising changes for all portfolios.

The complete reversal in rankings for the stabilized portfolios makes more

Risk Rankings for EUD and Normalized EUD

from most to least risky for cost for time
non-stabilized portfolios 7
ranked by EUD " #3-#2-#5-#1-#4 II #3-#2-#4-#5-#1
ranked by norm. EUD " #2-#3-#5-#1-#4 " H2-#3-#1-#4-#5
7 stabilized portfolios
ranked by EUD " #1-#2-#3-#4-#5 " #5-#4-#3-#2-#1
ranked by norm. EUD || #1-#2-#3-#4-#5 " #1-#2-#3-#4-#5
Table 4.6

sense when the magnitude of the EUDs are examined in Figure 4.25, as they are all
relatively the same. The difference in means (see Figure 4.24) then dominates. Similar
effects are causing the swapping of position in the non-stabilized time rankings.
The semi-variance could be used in place of the variance, to form a "coefficient of

semi-variance." This would measure the relative downside risk in a similar fashion as the
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normalized EUD, with the same difficulties when the deviation from the mean is less than
1.

The coefficient of variation and normalized EUD are relative risk measures, but by
dividing by the mean, the risk expressed solely by the shape of the variables' distributions
is confounded with a measure of value. They are unitless quantities, and therefore may
not have much meaning to a program manager who wants to know the actual dollar or
year risk. |

4.2.5 Summary of Risk Measures. We have examined many ways of quantifying
risk. By breaking the objective cost and schedule distributions out from the subjective
utility scores, we can give the decision maker much more information that will impact his
or her decisions. The range graphs, showing the bounds and expected value of our output
PDFs, show the potential best, worst, and most likely cases for each portfolio. When
combined with the mean + EUD charts, these graphs convey the cost and schedule risks of
each portfolio in a concise and easy-to-understand manner. We compared the EUD
measure of risk to variance and semi-variance, and found that with our notional data they
would generate different risk rankings. This makes EUD more attractive than semi-
variance, because of the problems with squaring deviations that are less than one. Relative
risk measures such as the coefficient of variation and the similar normalized EUD resulted
in different rankings in some portfolios as well, but their usefulness as unitless quantities to

a practical decision maker concerned about dollars and schedule months is debatable.
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4.2.6 Sensitivity to Estimates of the Probability of Successful Implementation.
The recommendations of the Decision Analysis Module (i.e. technology portfolio
selection) may be sensitive to changes in the estimates of P(use). If errors in P(use) have a
large effect on the results, the recommendations of the decision support system could be
subject to dispute. It would be necessary then to more accurately determine the P(use)
parameter. However, it may be difficult to increase the accuracy of the P(use) estimates,
as discussed in Chapter 11, section 3.3.4.

To examine the sensitivity of the preliminary results to changes in P(use), two
additional cases were examined in detail for four technology portfolios. The levels of
P(use) were raised by 10% (to a maximum of 100%) for all of the portfolio’s technologies
and the effects quantified. The same portfolios then had their P(use) lowered by 10% (to
a minimum of 0). This way potential systematic over- and underestimations could be
examined. While these are not the most stressing cases of potential mis-assessment, some
idea of the potential effects can be gained. The #1 and #3 portfolios for both the non-
stabilized and stabilized strategies were examined to illustrate this concept. These four
were chosen to cover both retrieval-treatment-disposal and containment strategies for the
non-stabilized case, and to check more than one stabilized portfolio. A more complete
examination of the sensitivity to P(use) should be accomplished when analyzing actual
sponsor-donated data with a fully running LCC model.

4.2.6.1 Graphical Comparisons. Figures 4.41-4.60 show the different

range and EUD graphs for these four portfolios.
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Examination of the graphs of ranges in Figures 4.41 to 4.48 shows no great effect
of lowering P(use) by 10% for all technologies. The mean costs and times rise slightly,
but the high costs and times remain mostly the same. Raising P(use) lowers the
probabilities of the highest costs and times, as one would expect from lower chances of
incurring the penalty times and costs. Consequently, the probabilities of the lowest
utilities change as well. The graphs of utility ranges, Figures 4.49-4.52, show large
changes in the lowest utilities for the unstabilized #3 and stabilized #1 portfolios, a small
change in the low point for stabilized #3, and little or no change for unstabilized #1. In
general, the ranges of time remained fairly constant while increasing P(use) dramatically
lowered the highest costs for all but unstabilized #1.

More effects can be seen on the graphs of cost and schedule means and EUDs,
Figures 4.53-60. The unstabilized #3 portfolio in particular has a shift in mean cost as
P(use) is raised (mean drops from $18.94M to $13.54M) and lowered (mean rises to

$25.77M; see Figure 4.39). There was little change in schedule risk as P(use) changed in
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Figures 4.48-4.51. In general, risk increases when P(use) is lowered and decreases when

P(use) is increased.

4.2.6.2 Statistical Testing. To confirm the conclusions drawn from the

graphs, statistical tests of hypotheses were used to examine the impact of the systematic
changes in P(use). The simulation results were treated as samples drawn from the
population that would have resulted from the use of full enumeration in the DA model.
First, the variances of the basecase were compared to the raised P(use) results and the
lowered P(use) results to see how different they were. This procedure is summarized in
Table 4.7 below. Then, the means of the results were compared to see if they were

statistically different, using the procedure in Table 4.9.

Test of Equal Variances

H;: 0,># 0,
2 2

L. . max (S;, S
Test Statistic: ¥ - ——(’2—252
min (52 §2)

RR: F> F.

-z-,nz-l,nu-l

where n;, corresponds to the largest S? and n, to the smallest
Assumptions: Two samples are independent and normally distributed.

Table 4.7 [Mendenhall, et. al., 1990:468-9]

The normality assumptions provide some difficulty, but with 10,000 samples and

some caution this test can still be applied. There was some difficulty in finding the
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rejection region, since most tables or software for the F distribution do not reach degrees
of freedom as high as 10,000/10,000 before going to the limit at infinity. However, we

can bound the appropriate F statistic since we know

F%,IOOO,1000>F%,9999,9999>F¥;—,-,~’ 4.2)

and F. _ _ =1 for all «. Therefore, if the test Statistic F > Fx 1000 1000 WE knOw for
% - 2, 1000,
certain that we can reject the null hypothesis for that significance level «. If
on the other hand, we cannot say for certain that we fail to reject H, since

F< F%, 1000, 10007

the true rejection region threshold is less than Fu 00 1000- With this in mind, Table 4.8
2, 1000,

2 2
.. . . . max (85,8
shows the necessary significance level o required for the test statistic —-—-—-% >
min (S, ;)

F‘—;-, 1000, 1000°

As these significance levels show, at an « of 0.01 we can reject the null hypothesis
in all but one case, that of the completion time of the #1 non-stabilized portfolio when
lowering P(use). Since the actual rejection region threshold is lower than that used for the
above table, that case may still reflect different population variances. In general, we can
say with high confidence (1 - «) that changing P(use) had a statistically significant effect
on the variance of the output cost, time, and utility distributions, if the normality
assumption was justified. Although we cannot accept this normality assumption, We can
cautiously say that the systematic changes in P(use) had a demonstrable effect on the

variance of the results.
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Results of Testing Equal Variances

Cost Time Total Utility

F o F o F o
unstab. | P(use)+ | 1.302 | 0.00001 1.208 | 0.00071 1.68 | <5x10°
# P(use)- | 1.157 | 0.005305 | 1.138 | 0.01027 | 1.453 | <5X 10°
unstab. | P(use)+ | 3.074 [ <5x10° | 1.622 | <5x10% | 3.638 | <5x10°
#3 P(use)- | 1.577 | <5x10° | 1.388 | <5x10° | 3.55 | <5x 10°¢
stab. | Puse)+ | 1.898 | <5x10° | 1.629 | <5x10° | 14.131 | <5x 10°¢
#l P(use)- | 1.787 | <5x10° | 1.382 | <5%x10° | 2.878 | <5x 10°¢
stab. | P(use)+ | 1.872 | <5x10° | 1.291 | 0.000015 | 221 | <5x 10°¢
#3 P(use)- | 1.792 | <5x10° | 1.179 | 0.002345 | 2.15 | <5x 10°¢

Table 4.8

Since we know that 6,2 # 0,7, testing to see if the difference between the means of

the basecase and the changed cases becomes difficult. Classical hypothesis tests do not

cover this situation. However, Law and Kelton do describe an approximation that allows

one to make confidence intervals on the difference of two means from approximately

normal distributions with unequal variances [1991:589]. Using this Welch approximation

in a hypothesis test gives us the procedure in Table 4.9.

4-44




Test of Equal Means

Hy p=p
H pp#p,
. ®-E

Test Statistic: ¢ -
5T 8
n, ' n,

RR: |f] > ta

t] 7
s,
2 ("1 ' ;)
where £ -

(“’—‘z)’(n1 -1) . (5’1)20:2 - 1)
n n

Assumptions: Two samples are independent and normally distributed.

[Mendenhall, et. al., 1990:457; Law and Kelton, 1990:589]

Table 4.9

In our case of n, = n, = 10,000, the approximate degrees of freedom for the t
statistic, £, is approximately «, resulting in ¢ = 2.576 for o = 0.01. Table 4.10 below gives
the results of this testing.

Again at the 99% significance level, we can say that changing P(use) had a
statistically significant effect on the means of the output cost, time, and utility
distributions, if the normality assumption was justified. Again although we cannot accept
this assumption, we can cautiously say that the systematic changes in P(use) had a

demonstrable effect.
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Results of Testing Equal Means

Cost Time Total Utility

a

Result t Result t Result

>

unstab. | P(use)+ 14.58 reject 11.06 reject 9.26 reject

#1 P(use)- 12.31 reject 10.75 reject 7.69 reject

unstab. | P(use)+ | 32.67 reject 20.63 reject 24.24 reject

#3 P(use)- | 29.63 reject 19.42 reject 23.69 reject

stab. P(use)+ | 17.15 reject 20.97 reject 20.39 reject

#1 P(use)- | 21.81 reject 21.87 reject 20.9 reject

stab. P(use)+ | 17.25 reject 15.26 reject 18.89 reject

#3 P(use)- 22.03 reject 16.68 reject 21.35 reject

Table 4.10

The statistical tests show that the changes in P(use) do have a statistically
significant (« = .01) effect on the resulting distributions — if these distributions are
normally distributed. However, we know from the histograms that they are often highly
skewed. The hypothesis test for the means being equal uses an approximation from Law
and Kelton for use in generating confidence intervals, which they say are good
approximations even if the actual distributions are not normal [1991:588]. This gives
some justification for cautiously using the results of the statistical tests.

4.2.6.3 Additional Portfolios. While only these four portfolios were

examined in detail, the other portfolios were also checked for the effects of systematic
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changes in every P(use) estimate. Figures 4.61 and 4.62 show the different total utilities

for each portfolio under all three P(use) conditions. As one can see from Figure 4.61,

there is a case of rank order changing when P(use) is raised. The #5 portfolio is ranked

Total Utilities When P(use) is Changed

top five non-stabilized portfolios
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Figure 4.61

higher than the #4 one. In all other cases the relative rankings of these portfolios by total

utility are the same.

Detailed sensitivity analysis can and should be done using the analysis tools that

are part of the DPL® software to investigate the sensitivity of a recommendation to single
values of P(use). In that way the criticality of individual assessments can be examined and
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top five stabilized portfolios

Total Utilities When P(use) is Changed
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further investigated as needed. This is of great importance since we can see how changes

in P(use) estimates may change the Decision Analysis Module’s recommended technology

portfolios.
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V. Conclusions and Recommendations

5.1 Conclusions From the Preliminary Study

Working from the best engineering data available, we see trends developing from
the results of the preliminary analysis described in Chapter IV. Containment strategies
have much lower cost risks than retrieval-treatment-disposal strategies. Schedule risks are
approximately the same for the top portfolios, leaving the mean required remediation time
as the dominant discriminator between portfolios with this notional data. Including
stabilization processes within a containment portfolio adds substantial cost and time.
Some strategies (#4 and #5 with stabilization, #4 and #5 without stabilization) have the
potential for unacceptable schedu1¢ overruns, with some costs near the $80M range
despite mean costs of about $10-20M without stabilization and $30-50M with it. The
model does not include the potential benefits of stabilizing the landfill, however, and safety
and legal requirements may dictate the use of a stabilization strategy for specific sites.

These results may change when the Life-Cycle Cost Module is operational, since
they are based on overall cost estimates for remediating 500,000 cubic feet of mixed waste
instead of detailed models of the associated process. Still, containment strategies are
likely to remain dramatically less cost risky than ex situ treatment strategies because the

strategies are less complicated.
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5.2 Conclusions About the Methodology

While subjective probability estimates have been used for technology selection
[DOE, 1995¢] and qualitative assessment of technical risk has played a role in evaluating
different treatment technologies [Feizollahi and Quipp, 1995], quantifying the cost and
schedule risks of candidate technology alternatives has not been done before for EM-50.
The basic idea of Jia and Dyer, Weber, et. al., and others of quantifying risk using the
variation about the expected value was applied through the simple expected unfavorable
deviation (EUD) developed in Chapter IIL.

This independent measure of risk can be used as another decision criterion for each
attribute, for risk averse decision makers. Mean cost and schedule results together with
their EUDs can be used in a variety of ways to find the best technology strategy for a
given application.

Subjective probability estimates for the duration of R&D, the likelihood of
successful implementation, and the cost elements and capabilities of the LCC simulation
model offer the best way to incorporate risk factors into the inputs of the decision support
system. Risks of performance variability are then expressed through the measurable
outputs of cost and time. These two attributes, total cost and overall schedule, are the
two aspects of a remediation effort, apart from environmental and health risks, that are
most important to our senior level decision makers. The final probability distributions that
result from the Decision Analysis Module can then be condensed down to means, ranges,

and EUDs with which we can compare alternatives.
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While the preliminary study described here used R&D release date distribution that
were originally estimated by experts using the earliest, most likely, and latest possible
dates, several references have advocated soliciting opinions from the experts using the
10% and 90% fractiles instead of the absolute limits of the subjective distribution [Keefer
and Bodily, 1983; Williams, 1994; Hudak, 1994]. This approach may limit the under-
representation of the tails that motivated adjusting the distributions in Chapter III. While
this may take additional explanation to solicit from experts, the results are worthwhile if
the experts understand what is meant by “no more than one out of ten times will the
schedule be shorter/longer than...” If this is done, no additional adjustment in necessary.
The procedure in Chapter III can be used to find the absolute limits of the distribution for
use in software applications.

If possible, use of a laptop computer or other convenient plotting device should be
used to graphically depict the probability distributions that the expert(s) is(are)
considering. This will help clear up confusions about the meanings of distribution
parameters if done during the interview or group information gathering session.

Investigation of the non-uniform DPL® histogram bins illustrated a relationship
between the number of histograms (or “intervals” in the DPL® set-up menu) and the
desired resolution of the attribute under consideration. In general, the maximum range of
that attribute from the set of portfolios divided by the number of histogram bins should not
be greater than the level of resolution desired. For cost in the preliminary study, the

maximum range was a bit over $75M (~ $9IM to ~$85M). Since 91 intervals were used
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throughout the study, the cost resolution was less than $1M. Considering the coarseness
of the input estimates, this was judged to be sufficient. However, when the decision
support system is used with more precise data fed into the LCC Module, the resolution
will be much finer. In that case, the number of intervals should be increased appropriately.

The use of a simple point estimate for P(use) is not without hazard. Expression of
unknown parameters is preferred to be in terms of probability distributions or intervals,
instead of point estimates. Careful sensitivity analysis of this factor is recommended to
judge the effects of inaccuracies on the recommended technology portfolios. If the
recommendations are very sensitive to a few key estimates of P(use), more effort should
be spent on assessing these parameters. Perhaps a panel of experts could be convened to
assess these point estimates, using the average of their individual assessments to set the
new parameters. If the technology is far enough along in its development cycle, results
from developmental tests and evaluations could be used to establish P(use) estimates.
Developing historical records concerning P(use) accuracy will be an important
consideration.

These techniques are by no means restricted to the DOE technology selection
problem. The basic procedure of expressing inputs as random variables and examining the

output distributions of relevant decision variables applies to any network of processes.

5.3 Recommendations for Technology Management and Risk Assessment
5.3.1 Sources of Expert Judgement. Since expert judgement is so critical for

technology forecasting, any improvements to the process of soliciting expert opinion will
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be of great benefit to the Office of Technology Development. The recently completed
tritium study provides an excellent example of what can be done with enough effort. This
study compared different tritium production technologies and facility alternatives by
pulling together a group of experts and training them in subjective probability estimation
to produce cost, schedule, and performance distributions [DOE, 1995¢]. Similar training
can be given to soil remediation experts brought together at a workshop where, under a
group dynamic method such as in Chapter I, release date distributions, probabilities of
success in the field, and LCC cost elements can be estimated for a whole group of
technologies.

As these emerging technologies move closer to the field, the number of people
with sufficient experience with them should grow, making alternative sources of expert
opinion easier to find. Other experts besides the technology developers themselves should
be cultivated and included in the decision process.

Better surveys and interviews should be designed and refined to solicit assessments
from experts. The preliminary questionnaire in Appendix D should be replaced by one
that draws on the literature uncovered in this study. Personal interviews, rather than faxed
surveys, can improve the acquisition of information by allowing for more interaction and
mutual education through interpersonal contact. The additional cost and time required to
conduct interviews, however, may dissuade using them for a large group of experts.
Interviews allow more data to be collected, including unanticipated information and

suggestions, but may result in soliciting estimates from a smaller and potential biased pool



of experts. The trade-offs between desired depth of expert judgement and available
resources will have to be made.

DOE policy should require contractors to submit long-term schedules and cost
estimates for the development of their products, updating them in annual reporting cycles
that are tied to the TTP approval process. Constructing a database of long term schedule
and cost estimates at DOE will allow more accountable estimates to be developed.
Keeping such a database will help support EM-50's planning and budgeting process.
Adherence to these schedules and cost estimates may be a suitable criteria for allocating
funding among the development projects.

Using these estimates and documented test results, the accuracy of an expert’s
predictions over a period of years can be evaluated. From comparisons between actual
dates and interim milestone estimates, correction factors for schedule estimates may be
empirically developed once sufficient data have been recorded. Requiring the delivery of
such historical data is highly encouraged for future technology development contracts
written by the Office of Technology Development. Methods beside simple averages can
be used to combine different experts’ estimates using past accuracies to determine the
weights. Selection of the best experts based on past performance will be possible after
sufficient records are kept.

Finally, cooperative work with the EPA’s SITE program to establish better
estimates of probabilities of successful field use can aid EM-50 and EPA as they share test

results and collaborate on experiments designed to address the needs of the decision
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support system. The impact of incorrect preliminary site characterization can also be
investigated.

5.3.2 Portfolio Management. Modern investment theory revolves around the
concept of managing a group of investments based on the investor’s attitudes toward risk
and the desired rate of return. The group is viewed as opportunities being created through
the investing of resources. A mixture of lower and higher risk investments is sought with
the anticipation that some investments will fail. However, these failures are only part of
the overall investment, and so no one failure should be devastating. The higher risk
investments can provide a better-than-expected return as well as a higher potential for loss
[Ryan, 1990:68]. The key is to invest in opportunities whose net incomes are not
positively correlated (i.e. all do not lose money at the same time) [Levy and Sarnat,
1990:269].

This idea can be employed by the DOE for managing EM-50's technology
development projects. Instead of financial investments, the portfolio consists of
technologies, and the opportunities being created are the new capabilities needed for the
national remediation effort. A combination of technologies of different levels of expected
performance and risk that robustly cover the spectrum of waste types may be a valuable
way to manage the risks in the long-term technology development effort.

5.3.3 Cautions About Risk and Cost-Effectiveness. New and untried technology
is often going to be more inherently risky than older, proven technology. Therefore any

technology investment decision based solely on choosing the least risky alternatives is
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weighted against selecting emerging technologies. A similar situation is created when
comparing life-cycle costs of undeveloped technology, which includes future R&D costs,
and established technology, which does not. Inclusion of availability deadlines also creates
a situation favoring the old over the new.

While the risk, cost, and availability concerns are valid ones, they must not be the
only criteria used. The reason for investing in new technology is to buy future capabilities
that are not currently available. This increased expected performance should be included
in the decision criteria for technology investment, since it is the primary advantage of
emerging technologies. If only the negative aspects of new technologies are measured, the

fundamental reason for investing in emerging technology will be neglected.

5.4 Suggestions for Future Work

The work in this study can be extended in many directions. One obvious area for
further research is the assessment of developmental costs in the decision support system.
The current naive uniform annual R&D cost could be replaced by some technology or
process-specific cost distribution over the duration of R&D. This would require
examining historical cost records and forecasting this shape into the near future. Care
would be required, however, to identify and isolate the effects of varying budgetary
allocations over the time frame under study.

The model of remediation used in this study relies on the assumption of the
independence of individual process durations in the field, given a certain amount of waste

to characterize, stabilize, etc. The effects of relaxing this independence assumption would
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be a very useful area of study. The individual operational costs and timing of employing a
technology in the field could be examined, so to quantify that technology’s contribution to
the overall portfolio risks.

The expected unfavorable deviations (EUDs) for cost and schedule developed here
can be used as independent decision attributes in addition to cost and time as used
currently in the DA model. Utility functions for cost and time EUDs could be assessed
with DOE technology managers, adding cost and schedule risk explicitly as important
decision variables. Mean cost and time for technologies, together with the associated
EUDs, could also be used to define a math programming portfolio selection problem,
where different combinations of technologies would result from different desired mixtures
of risks and expected performance payoffs subject to cost and time constraints [Sherali, et.
al., 1994; Weber, et. al., 1990].

Further analysis of the probability of successful implementation of these innovative
technologies in the field is warranted. Characterizing this subjective probability through
conditional statements of the technology’s performance given the presence of specific
waste types and items would establish the site-dependent nature of the performance of
these technologies. Information from preliminary site assessments could then be used to
establish site-specific estimates of the probability of successful use.

While this decision support system is using operations research tools of simulation
and decision analysis, this technology selection problem can benefit from other techniques

including optimization. Sherali, Alameddine, and Glickman’s paper on selecting mixes of
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prevention and mitigation alternatives subject to budgetary constraints suggests a way to
find an optimally least risky set of new technologies using math programming methods
through the concept of risk as undesired events and their likelihoods [1994:197-201].
This treatment of risk, combined with other math programming methods, may allow a
different solution technique than the use of DPL® simulations.

Concerns about the reaction of stakeholders and public opinion to different
remediation technologies was not included in the decision support system. DOE managers
do need to take such factors into account in managing emerging technology. Stakeholder
values for characteristics of different remediation techniques, such as the use of
incineration, on-site disposal, noise and odors given off, could be captured through
interviews with cooperative environmental activist organizations and concerned citizen
groups. Technologies could then be assigned a general public approval rating that could

used in addition to cost, schedule, and performance criteria for decision making.

5.5 Final Conclusion

Life-cycle cost analysis and the systematic, quantitative assessment of technical
risk are crucial to making good technology management decisions. The techniques
described in this study depict technical risk in a simple way, through undesired cost and
schedule deviations from expected means, that clearly communicate the basic risks of each
alternative remediation strategy to decision makers. It should be remembered that
“managers do not enjoy using difficult decision-making methods to make difficult

decisions” [Millett and Honton, 1991:74]. In that spirit, explanations of technical risk
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should stay simple and concise.

The risks involved in new remediation technology are not the only risks.
Programmatic risks have a much greater impact on the overall success or failure of the
technology development program than one project’s uncertain development schedule.
EM-30 and EM-40 remediation efforts that did not use any innovative technology at all
still averaged 42% and 18% schedule slippage, respectively, and averaged cost overruns
of 48% [DOE, 1993:90, 94, 100].

An effective management cycle of planning, supervising the work, evaluating
project status, and reacting with updated plans should be part of technology management
practice in EM. If these fundamentals are not present, technology risks are irrelevant since
the program will fail in any case. The technology then becomes the scapegoat for the
failure of the program [Ryan, 1990:69].

The Department of Energy has no real choice but to manage risk carefully and
intelligently. Costs must be controlled and technical risk must be minimized. The
methods in this study will provide the DOE with some risk assessment tools required to

effectively complete the cleaning up of federal reservations throughout the country.
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Appendix C: Output Histogram Statistics

Non-Stabilized Portfolios, Basecase

Cost
#1 #2 #3 #4 #5

Mean ($M) 6.56 16.98 18.94 17.01 10.07

Lowest ($M) 3.91 9.16 10.04 14.79 6.19
Highest ($M) 11.77 70.05 85.38 19.7 68.33
Variance ($M?) 3.91 197.63 205.97 1.47 82.69

Standard Dev. ($M) 1.98 14.05 14.35 1.21 9.09
EUD ($M) 0.7622 5.3341 5.5769 0.4032 2.5535
Semi-variance ($M?) 2.3646 162.23 164.95 0.7295 75.311
Coef. of Variation 0.3013 0.8277 0.7577 0.0712 0.9027
Norm. EUD 0.1161 0.3141 0.2945 0.0237 0.2535

Time
#1 #2 #3 #4 #5

Mean (years) 3.73 3.14 3.29 5.42 5.29

Lowest (years) 2.3 1.88 1.97 4.08 3.57
Highest (years) 7.65 7.21 7.82 10.47 10.95

Variance (years?) 0.82 1.42 1.43 091 1.19

Standard Dev. (years) 0.91 1.19 1.2 0.96 1.09
EUD (years) 0.3452 0.4304 0.4417 0.3717 0.3558
Semi-variance (years®) 0.4835 1.0087 1.0103 0.5686 0.7838
Coef. of Variation 0.2426 0.3797 0.364 0.1764 0.2062
Norm. EUD 0.0925 0.1373 0.1343 0.0686 0.0673
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Total Utility

#1 #2 #3 #4 #5
Mean (utility) 0.99379 | 0.98926 | 0.98615 | 0.96184 | 0.95822
Lowest (utility) 0.77783 | 0.69768 | 0.48168 0 0
Highest (utility) 0.99925 | 0.99932 | 0.99799 0.995 0.99728
Variance (utility?) 0.00014 | 0.00055 | 0.00105 | 0.00353 | 0.00674
Standard Dev. (utility) 0.01193 | 0.02338 | 0.03247 | 0.05941 | 0.08209
EUD (utility) 0.00286 | 0.00657 | 0.00826 | 0.01705 | 0.02258
Semi-variance (utility?) 0.00013 0.0006 | 0.00096 | 0.00309 | 0.0061
Coef. of Variation 0.012 0.0236 | 0.0329 | 0.0618 | 0.0857
Norm. EUD 0.00288 | 0.00665 | 0.00837 | 0.01773 | 0.0236
Table C.1
Stabilized Portfolios, Basecase
Cost
#1 #2 #3 #4 #5
Mean ($M) 43.37 39.11 39.08 49.6 49.81
Lowest ($M) 32.7 27.73 29.06 38.23 39.68
Highest ($M) 78.45 71.51 69.93 80.86 79.57
Variance ($M?) 47.87 39.81 35.08 37.22 33.28
Standard Dev. ($M) 6.92 6.31 5.92 6.1 5.77
EUD ($M) 2.3954 2.2318 2.076 2.0297 1.8861
Semi-variance ($M?) 31.599 26.148 23.062 24.835 22.096
Coef. of Variation 0.1595 | 0.1613 | 0.1516 0.123 0.1158
Norm. EUD 0.0552 0.0571 0.0531 0.0409 0.0379
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Time

#1 #2 #3 #4 #5
Mean (years) 1.68 4.01 5.02 5.43 5.48
Lowest (years) 0.92 2.5 342 4.08 4.08
Highest (years) 5 7.88 9.61 10.47 10.47
Variance (years?) 0.47 0.86 0.88 0.91 091
Standard Dev. (years) 0.69 0.93 0.94 0.95 0.95
EUD (years) 0.2678 0.35 0.3543 0.3722 0.3734
Semi-variance (years?) 0.3255 0.5047 0.5195 0.5671 0.5664
Coef. of Variation 0.4084 0.2305 0.1868 0.1759 0.1741
Norm. EUD 0.1593 0.0872 0.0705 0.0686 0.0682
Total Utility
#1 #2 #3 #4 #5
Mean (utility) 099184 | 0.9918 | 0.98589 | 0.96986 | 0.96935
Lowest (utility) 0.7824 | 0.87073 | 0.73588 0 0
Highest (utility) 0.99824 | 0.99812 | 0.9974 | 0.99299 | 0.99275
Variance (utility?) 0.00016 | 0.00007 | 0.00024 | 0.00236 | 0.00217
Standard Dev. (utility) 0.01244 | 0.00849 | 0.01556 | 0.04858 | 0.04654
EUD (utility) 0.00277 | 0.00243 | 0.00447 | 0.00951 | 0.00914
Semi-variance (utility”) | 0.00014 | 0.00006 | 0.00021 | 0.00221 | 0.00202
Coef. of Variation 0.0125 0.0086 0.0158 0.0501 0.048
Norm. EUD 0.00279 | 0.00245 | 0.00454 | 0.0098 | 0.00943
Table C.2
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Portfolios After Increasing All P(use) By +10%

Cost
#1 non-stab. | #3 non-stab. | #1 stab. #3 stab.
Mean ($M) 6.18 13.54 4191 37.81
Lowest ($M) 3.93 9.75 32.78 29.08
Highest ($M) 11.76 52.61 57.25 52.28
Variance ($M?) 3 67.01 25.23 18.74
Standard Dev. ($M) 1.73 8.19 5.02 4.33
EUD ($M) 0.5958 1.7861 1.8716 1.6168
Semi-variance ($M?) 1.8135 63.233 13.163 9.796
Coef. of Variation 0.2804 0.6045 0.1198 0.1145
Norm. EUD 0.0964 0.1319 0.0447 0.0428
Time
#1 non-stab. | #3 non-stab. #1 stab. #3 stab.
Mean (years) 3.6 2.97 1.5 4.83
Lowest (years) 2.3 1.97 0.92 3.41
Highest (years) 7.68 7.3 4.08 8.73
Variance (years?) 0.68 0.88 0.29 0.68
Standard Dev. (years) 0.82 0.94 0.54 0.83
EUD (years) 0.3184 0.2777 0.1697 0.3136
Semi-variance (years®) 0.3963 0.5314 0.2047 0.3939
Coef. of Variation 0.229 0.3159 0.3591 0.1709
Norm. EUD 0.0885 0.0934 0.1133 0.0646
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Total Utility

#1 non-stab. | #3 non-stab. #1 stab. #3 stab.
Mean (utility) 0.99518 0.99504 0.99447 0.98944
Lowest (utility) 0.77774 0.80817 0.97648 0.78707
Highest (utility) 0.99925 0.9992 0.99834 0.9974
Variance (utility®) 0.0000848 0.00029 0.000011 0.00011
Standard Dev. (utility) 0.00921 0.01702 0.00331 0.01048
EUD (utility) 0.002025 0.003005 0.001111 0.002744
Semi-variance (utility?) 0.0000788 0.0002 0.000008 0.000097
Coef. of Variation 0.0093 0.0171 0.0033 0.0106
Norm. EUD 0.002035 0.00302 0.001117 0.002773
Table C.3
Portfolios After Decreasing All P(use) By -10%
Cost
#1 non-stab. | #3 non-stab. #1 stab. #3 stab.
Mean ($M) 6.92 25.77 45.89 41.26
Lowest ($M) 3.81 9.71 32.53 29.01
Highest ($M) 11.77 85.93 78.39 71.23
Variance ($M?) 4.52 324.79 85.57 62.87
Standard Dev. ($M) 2.13 18.02 9.25 7.93
EUD ($M) 0.91523 7.655578 3.449799 2.696839
Semi-variance ($M?) 2.562213 216.46 58.34679 42.88073
Coef. of Variation 0.3073 0.06995 0.2016 0.1922
Norm. EUD 0.1322 0.2971 0.0752 0.072
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Time

#1 non-stab. | #3 non-stab. #1 stab. #3 stab.
Mean (years) 3.88 3.65 1.91 5.25
Lowest (years) 2.3 1.98 0.92 3.42
Highest (years) 7.69 8.08 4.97 9.59
Variance (years?) 0.93 1.99 0.65 1.04
Standard Dev. (years) 0.97 1.41 0.81 1.02
EUD (years) 0.376964 0.589207 0.339199 0.411124
Semi-variance (years?) 0.543524 1.3009 0.411465 0.596952
Coef. of Variation 0.2494 0.3866 0.422 0.1939
Norm. EUD 0.0973 0.1616 0.1774 0.0783
Total Utility
#1 non-stab. | #3 non-stab. #1 stab. #3 stab.
Mean (utility) 0.99235 0.96974 0.98672 0.97998
Lowest (utility) 0.77569 0.44457 0.78511 0.72902
Highest (utility) 0.99923 0.99803 0.99798 0.99696
Variance (utility?) 0.000207 0.00374 0.000446 0.000522
Standard Dev. (utility) 0.01439 0.06118 0.02111 0.02285
EUD (utility) 0.003579 0.002025 0.006216 0.007018
Semi-variance (utility?) 0.000188 0.003305 0.000392 0.000438
Coef. of Variation 0.0145 0.0631 0.0214 0.0233
Norm. EUD 0.003607 0.002089 0.006299 0.007161
Table C.4
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Appendix D: Preliminary Technology Interview Script

Technology Risk Questions

For MSE Interviews

Target Interviewees: technology developers/principle engineers, first set
govermment project managers, second set
waste site managers/owners of the landfill, third set

General Approach:
Always let interviewees explain their answers in their own words — ask
for more than just a “yes/no” or number answer.
Make questions as user-friendly as possible.
Ieave time for interviewees to add information or additional questions as
they === fit.
Include a description of what we mean by temms like “development
| effort,” ec.
| Send a letter explaining the purpose of the upcaning interview to the
1 interviewee ahead of time. Include sample questions.

Capt Tom Timmerman, AFIT/ENS
| November 22, 1995
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Questions for Technology Developers

Terminology:

technology, technical approach: The technology involved with the
remediation/characterization product in. All of the product-related issues,
including cost, R&D schedule, implamentation at a site, etc. is referenced by the
“technology” involved.

development effort: The R&D process of developing the technology,
starting with concept exploration and going all the way through prototyping and
testing. It ends when the tedmology is ready to be used at a waste site.

implaventation: Actual use of the tedhmology at a specific site, with the
site manager being the custaner. Successful implementation means achieving
the rarediation goals for that technology, given that the technology was
successfully developed.

tecdhnology path: The entire set of different technical approaches used in a
camplete ramediation process, starting with characterization of the site and
leading through the possible application of stabilization, removal, treatment,
disposal, contaimment, and menitoring technologies.

1. General information
a. interviewse’s name:
b. nare of the project:
c. TIP number:

d. name of the DoE manager of the project:

2. Current stage of develcgment
At the time of these answers, where would this development effort fall in
the DcE s “technology maturation phases” shown here? [show them the chart]
circle one: hasic research, applied research, exploratory develogrent,
advanced development, engineering development, demonstration

3. Sdhedule estimates

a. What is your projected develcpment schedule? May we have a ocpy of
your latest overall schedule?
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b. When do you think the technology will be ready for implementation?
Could you give a range of dates, including an estimate of lower & upper bounds
as well as a most likely date? What are they?

4, Testing & prototypes
Please describe the kinds of testing and demonstrations planned in this
develagment: effart, including lab and on-site tests.

5. Mix of proven and emerging technology
a. What kinds of new innovative technology are involved with this
technical approach?

b. What relies on proven technology in this technical approach?

c. Please characterize the rough proportion of mature technology vs.
energing technology involved.

6. Bxdget sensitivity

a. Will you explain how sensitive your develcpment effort is to budget
fluctuations from your sponsor? If there was a sudden 10, 25, 50% decrease in
your funding, how would that affect the ultimate success of the develomment?
For example, would you be able to contimue the project? [-10%, -25%, -50%]
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b. How much additicnal time would be added to the schedule? [-10%,
-25%, -50%]

c. Is the project acosptable to your spansar in such a timeframe? [-10%,
-25%, -50%]

7. Aplicahility
a. What types of waste streams will this technology be applicable to?
i. most effective

ii. effadtbwe

iv. o effectiveness

b. Which of the following categories would these waste streams fall into?
[volatile organic compounds, semivolatile organic campourds, fuels,
inorganics (including radicactives), explosives]

c. What sort of things meke up the waste that this technology can handle,
e.g. barrels, shxge, liquids, buses, n/a, etc.?

8. R&D costs '

a. Could you give an estimate of the range of total expected develcpment
oosts of this technology, based on the current schedule? Please give a lower and
uper bound, as well as a most likely figure.
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b. What has been spent on the develcpment up to today? What fraction
of the total development has been campleted to date?

9. Camplexity & Reliability
a. What are the sub-systems involved in this technical approach?

b. What are the expected instrumentation & control costs involved?

10. Secondary wastes and public acceptance

a. What are the expected byproducts or secondary wastes produced using
this technical approach at a waste site?  What volumes of these byproducts are
expected, in relation to the input waste volumes?

b. Wt sorts of odors, dust, particulates, noise, etc. will be given off?

c. What is the potential for the release of radicactives?

d. What is the potential for operator injury?

11. Interactions with other tedmologies

a. Are there other characterization/remediation/monitoring technologies
that would ke well suited to work with this approach in an overall “‘technology
path” treatment of a waste site?




b. Are there cther technologies that are required to use this approach?

c. Are there technologies that are incanpstible with this one?

11. References
Would you please list sane of your past custamers as references?

12. Cther :
Is there anything else you’d like to add or camment on?




Questions for Govermment Managers of Technology Development Projects

Terminology:

technology, technical approach: The technology involved with the
rarediation/characterization product in. All of the product-related issues,
including cost, R&D schedule, implementation at a site, etc. is referenced by the
“technology” involved.

development effort: The R&D process of developing the technology,
starting with conoept exploration and going all the way through prototyping and
testing. It ends when the tedmology is ready to be used at a waste site.

implementation: Actual use of the technology at a specific site, with the
site manager being the custamer. Successful implementation means achieving
the remediation goals for that technology, given that the technology was
successfully developed.

technology path: The entire set cf different technical aporoaches used in a
aamplete remediation process, starting with characterization of the site and
leading through the possible application of stabilization, removal, treatment,
disposal, oontaimment, and monitoring technologies.

1. Goneral information

a. interviewee’s name:

b. nare of the project:

c. TIP nurber:

d. namre of the contractor developing the technology:
2. Current stage of develcament

At the time of these answers, where would this develcmment effort fall in
the DcE s “technology maturation phases” shown here? [show chart]

circle one: basic research, goplied research, exploratory develooment,
advanced development, engineering development, demonstration
3. Schedule

a. What is the projected develogment schedule? What fraction of the
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total work is camplete to date? What fraction of the total develcpment funding
has been expended so far?

b. When do you think the technology will be ready for implementation?
Could you give a range of dates, including an estimate of lower & upper bounds
as well as a most likely date? What are they?

4. Mix of emerging and proven technology
a. Roughly what kinds of new innovative technology are involved w1th
this technical approach?

b. Please characterize the rough proportion of mature vs. emerging
technology used.

5. Buxdget sensitivity

a. Will you explain how sensitive the development effort is to budget
fluctuations? If there was a sudden 10, 25, 50% decrease in your funding, how
would that affect the ultimate success of the develogment? For example, would
you continue the project?  [-10%, —-25%, —50%]

b. How much additional time would be added to the schedule? [-10%,
-25%, -50%]
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c. Is the project acoeptable to you in such a timeframe? [-10%, -25%, -
50

o°
ed

d. Is this project higher priority than the majority of the cthers being
managed by your office, lower priority, or about the same?

e. What kind of budget changes do you anticipate?

6. Aplicability
a. What types of waste streams will this technology be applicable to?
i. nost effective

1. effatiwe

iv. no effectiveness

b. Which of the following categories would these waste streams fall into?
[volatile organic campounds, semivolatile organic campounds, fuels,
inorganics (including radicactives), explosives]

c. What sort of things meke up the waste that this technology can hardle,
e.g. karrels, shxge, liquids, buses, n/a, etc.?

7. R&D costs
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a. Could you give an estimate of the range of total expected development
aosts of this technology, ased an the current schedule? Please give a lower and
uper bourd, as well as a most likely figure.

b. What has been spent on the development up to today? What fraction
of the total develcarent has been campleted to date?

8. Cantractor performance
a. How would you characterize the developer’s perfommance up to now?
circle ae: excellent, very good, good, fair, poor

b. How have they kept to the original schedule and budget? If there have
been changes, why?

9. Secondary wastes and public acceptance
What are the expected byproducts and secondary wastes produced when
using this technical aporoach at a waste site?

10. Cotractor references
Can you list same of the contractor’s past custamers that you know of?

11. Cther
Is there anything else you’d like to add or comment on?
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Questions for waste site managers

1. Expected landfill contents
a. What volures of waste do you think are present at your site, using the
following categories?
i. wolatile organic campounds

ii. semivolatile organic ocampounds

iv. inorganics (including radicactives)

1l). purely radicactive waste

v. explosives

b. What formms does the waste came in (i.e. sludge, fluids, karrels, boxes,
bulky equipment, wehicles, etc.)?

c. How oonfident are you in the estimate of what waste is in your site?
What kind of surprises do you think are likely (i.e. larger/smaller volumes,
uexpected waste types, unexpected items, etc.)?

2. Previaus site characterizations
a. Has a site characterization ever been dne? If so, how was it
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oonducted? What were the results? Can we get oopies of any resulting reports?

b. Is there documentation on what was put into the site and when it was
done? If so, may we get oopies?

3. Similar sites
Are there any sites that are very similar to yours? What are they?

4. Cther
Is there anything else you’d like to add or cament on?
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Appendix E: MathCad® Solution to Release Date Adjustment

Following the instructions in the MathCad® 5.0+ file, one can convert the expert’s
estimated triangular release date distribution into the adjusted distribution, to be put into
the Technology Database. The following pages show a print-out of this file. To find the
adjusted end-points, the appropriate inner fractiles should be entered as indicated. Page
E-3 calculates a triangular distribution’s mean, variance, PDF, and CDF. In the case
where the expert’s earliest release date estimate is zero (i.e. the present), use the equations

on page E-4.
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modified Keefer & Bodily solution method, for x(.03) & x(.90) fractiles

Given an expert's earliest, most likely, and latest estimated release dates, one can
solve for the actual earliest and latest dates (when assuming that the expert's dates were
really the 3% and 90% interior fractiles, respectively) by putting the expert's estimates in
the following three MathCad statements.

expert's earliest date x03 =3
expert's most likely date xm = §
expert's latest date x90 = 6

Then, turning on the "SmartMath" option under the "Math" menu above, the Find(x0,x1)
statement below will solve the two simultaneous equations under the Given statement.

(x03 - x0)2=.03~(x1 - %0)-(xm - x0) One must pick out the feasible pair of bounds from the 4
(x1 — x90 )2=.10~(x1 _ x0)-(xl - xm) pairs of solutions below.

Find(x0.x1) -> (/3.337589515.6269938086 3.4020090264529935869 2.5235299600509455174 2.4062636059387435714
ind(x0, x1
T \5.6227587950674624771 6.7731431572664418002 5.5792732197018725849 6.9367022226002384634
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triangular PDF, mean & variance

formulas taken from

earliest date a = .549 Law & Kelton, 1982
most likely date ci=2
latest date b =533
b az‘bz'c —ab-ac-bc
mean = a_—g_—_g mean = 2.626 variance = — ~ — T 5 —~Zvariance = 1.001
PROBABILITY DISTRIBUTION FUNCTION
£ (x) = 2(x - a) £(x) = 2:(b-x) xl =a,a+.l.c xu =c,c+.1.b
(b-a)(c-a) (b-a)(b-c) These are just counters for
(first half of PDF) (second half of PDF) the graphs.
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When the expert's earliest release date estimate is 0, the Keefer & Bodily approach breaks
down. Use the following equations in that case.

earliest date y0 =0
expert's most likely date ym = .5
expert's latest date y90 =1

Then, turning on the "SmartMath" option under the "Math" menu above, the Find(y1)

statement below will solve the two simultaneous equations under the Given statement.
Given

==

/2 1/2)
w[—y(yl—ym)+—4(—3-(ym—y0)
2yl 2 \yl/

r

‘ 1
. =%~(y1 - ¥90)- 2 2

_ One must pick out the feasible upper bound from the
yl-(ym-yl) ym-yl Agpairs of solutions below.

Find(yl) — (.83333333333333333333 1.3333333333333333333 )
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General Form
u(x) =a + be®™

Portfolios Without Stabilization

Appendix F: Utility Functions Used in the Pilot Study

(F.1)

Cost
0 < cost < $66M $66M < cost
a 1 -9.58-10°
b -0.0001234 121
c 1.154-107 -7.702-10%
Time
0 < time < 6.6 yrs 6.6 yrs < time
a 1 1.066-10"7
b -0.0001238 121
c 1.153 -0.7702
Portfolios With Stabilization
Cost
0 < cost < $77M $77M < cost
a 1.001 -2.347-10¢
b -0.0001273 121
c 9.852:10* -6.601-10°
Time

0 < time < 7.7 yrs

7.7 yrs < time

a 1 2.095-10"
b -0.0001245 121
c 0.9879 -0.6601



Appendix G: Non-Uniform DPL® Histograms

It is standard practice to use histogram bars of equal width or equal probability,
reflecting equal intervals of the attribute in question to collect frequency information. The
height of the bar reflects the proportion of the total number of samples that fall inside the
interval [Law & Kelton, 1982:180; Mendenhall, et. al., 1990:4].

Many of the histograms resulting from the DA model used in this study have
histogram bins of unequal width. Customer service at ADA Decision Systems, the makers
of DPL®, had no explanation for this behavior. As far as they understood, DPL® should
produce normal histograms [Dalton, 1996]. The source of this irregularity has not been
found at the present time (March 1996).

We have to consider the possibility that the irregularity is caused by some error in
DPL®. The effect of this irregular bin sizing would then introduce further error into
calculations of the mean, variance, and EUD with Equations 3.4, 3.6, and 3.7. In this
case, instead of representing bin members by the midpoints of equally sized bins, the
midpoints of larger width bins give less weight to their members than those of narrow
bins. Since potentially three or four narrow bars might fit inside a wide bar, the wider bin
midpoint counts a third or fourth as much as the ones from the narrower bins.

This additional error emphasizes the fact that these histograms and all the statistics
drawn from them are approximations of sample characteristics, which are themselves

estimates of population characteristics. Fortunately, as the number of iterations for each
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run of the DA model used here (10,000) is high enough to support the use of the central
limit theorem in establishing approximate confidence intervals and testing hypotheses
about the sample means [Mendenhall, et. al., 1990:319].

To indirectly examine the effect of the non-uniform histogram bins, the number of
intervals DPL® uses to collect the histogram data was increased from the default value of
91 to 1488, the maximum available. While there are still histogram bins of unequal size in
the 1488 case, there are much fewer and they carry less weight. The non-stabilized #3
portfolio was used. The means, variance, and EUDs of the two runs are summarized in
Table G.1.

Comparison of Cost Results for 1488 vs. 91 Histogram Intervals

for the #3 portfolio w/o stabilization

Mean ($M) Variance ($M)? EUD ($M)
1 - 91 intervals 18.94 205.97 5.577
2 - 1488 intervals 19.029 206.77 5.624
Table G.1

Using the same procedures described in section 4.2.6.2 in Chapter 4, we can test
the hypotheses that the population means and variances that underlie these results are the

same.
2
2
2
Sl
S,%). Again, because F statistics tables and software do not include degrees of freedom as

The test for the equality of the variances uses a test statistic of ¥ - —= (since S, >

high as 10,000/10,000, we need to look at a bound of Fa 400 1000 At an a of 0.01,
2, 1000,
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the rejection region threshold is 1.18. Since ;gg ;:Il = 1.003884, we fail to reject the

hypothesis that the two means are equal (the necessary p-level to reject the null hypothesis

is 0.23779).
The test for the equality of the means uses a test statisticof 7 . _5-% _anda
8,8
n m

rejection region of 2.765 for an & = 0.01. In this case our test statistic is 4381107,
which certainly does not fall inside the rejection region of greater than 2.765. At the 99%
significance level, we fail to reject the null hypothesis of the populations means being
equal, assuming the two distributions are normal. Even though the assumption is not a

good one, this result supports the continued use of the irregular DPLP® histograms.
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Appendix H: Hudak’s Adjustment to Triangular Distributions

Hudak, in his 1994 article “Adjusting Triangular Distributions for Judgemental Bias,”
describes a way to find the endpoints of a triangular distribution given the mode and two interior
fractiles. This appendix provides the core of his method [1994:1027].

The right end point, b, can be found with
the solution to the following four-degree
polynomial:

db*'+d,b* +d,p* +db+ds=0

a a m B b
where
X = x" fractile as a fraction (i.e. X = 0.1 for the
10" percentile)
Y = y® fractile as a fraction (i.e. Y = 0.9 for the 90" percentile)
Z=1-Y
o = x" fractile [given]
B = y™ fractile [given]
m = mode [given],
and Once b has been determined, find a
d,=a’-c with:
d,=2a,a,-c,
d,;=2a,a,+ 3,2 -¢c, a=b-(b-B)*/(Z(b-m))
d, =2aj2, - ¢,
ds=a? - c; The solution to the four-degree
A polynomial will involve four real roots. The
a=1-Z resulting pairs of b and a must be checked
a,=Za+Zm-20 against 3 and « — only one pair will satisfy
a, = p*-Zam the restrictions ona and b (a < &, b > B).
¢, =X(1-2) That pair are the endpoints to the
¢, =X (2Zm- (4 - 2Z) B) triangular distribution, and will fully specify
¢, =X ((6-Z) p?- 4Zfm - Zm?) it together with m.

¢, = X (- 4B + 2Zpm + 2Z pm?)
cs= X (B*-Zpn?)
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